Advertisement

Probing the structure of Fe nanoparticles in multiwall carbon nanotubes grown on a stainless steel substrate

  • L. Camilli
  • P. CastrucciEmail author
  • M. Scarselli
  • E. Gautron
  • S. Lefrant
  • M. De Crescenzi
Research Paper

Abstract

We investigated the local order in individual iron nanoparticles (NPs) embedded in carbon nanotubes (CNTs). The NPs directly come from the CNT growth on stainless steel without addition of external metal catalyst. The structural analysis has been obtained through nanoscale transmission extended electron energy loss fine structure (EXELFS) measurements above the iron L2,3 edge. A theoretical simulation of the EXELFS features has been performed within the multiple scattering theory. By comparing the experimental data with the simulations, we found that pure γ-Fe and Fe3C nanoparticles are the catalysts of the CNT synthesis on the stainless steel. Moreover, from the analysis of the fine details of the EXELFS oscillations, we also estimated the value of the fcc Fe NP lattice parameter to be a = 3.61 ± 0.03 Å. This last finding suggests a high magnetic moment of the fcc Fe NPs.

Keywords

Fcc iron Extended electron energy loss fine structure (EXELFS) spectroscopy Iron nanoparticles Carbon nanotubes 

Notes

Acknowledgments

This work was supported by the Air Force Office of Scientific Research Material Command, USAF, under grant no. FA8655-11-1-3036.

References

  1. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys Rev B 58:7565CrossRefGoogle Scholar
  2. Ankudinov AL, Bouldin CE, Rehr JJ, Sims J, Hung H (2002) Parallel calculation of electron multiple scattering using Lanczos algorithms. Phys Rev B 65:104107CrossRefGoogle Scholar
  3. Auerhammer JM, Rez P (1989) Dipole-forbidden excitations in electron-energy-loss spectroscopy. Phys Rev B 40:2024CrossRefGoogle Scholar
  4. Bagayoko D, Callaway J (1983) Lattice-parameter dependence of ferromagnetism in bcc and fcc iron. Phys Rev B 28:5419CrossRefGoogle Scholar
  5. Borowiak-Palen E, Mendoza E, Bachmatiuk A, Rummeli MH, Gemming T, Nogues J, Skumryev V, Kalenczuk RJ, Pichler T, Silva SRP (2006) Iron filled single-wall carbon nanotubes: a novel ferromagnetic medium. Chem Phys Lett 421:129CrossRefGoogle Scholar
  6. Butterfield MT, Crapper MD (2000) Extended X-ray absorption fine structure investigation of the structure of iron overlayers on Cu(111). Surf Sci 454(456):719CrossRefGoogle Scholar
  7. Camilli L, Scarselli M, Del Gobbo S, Castrucci P, Nanni F, Gautron E, Lefrant S, De Crescenzi M (2011) The synthesis and characterization of carbon nanotubes grown by chemical vapor deposition using a stainless steel catalyst. Carbon 49:3307CrossRefGoogle Scholar
  8. Camilli L, Scarselli M, Del Gobbo S, Castrucci P, Lamastra FR, Nanni F, Gautron E, Lefrant S, D’Orazio F, Lucari F, De Crescenzi M (2012) High coercivity of iron-filled carbon nanotubes synthesized on austenitic stainless steel. Carbon 50:718CrossRefGoogle Scholar
  9. Fallon P, Walsh CA (1996) Computer code PEELS. University of Cambridge, EnglandGoogle Scholar
  10. Gubbiotti G, Albini L, Tacchi S, Carlotti G, Gunnella R, De Crescenzi M (1999) Structural and magnetic properties of epitaxial Cu/Fe/Cu/Si(111) ultrathin films. Phys Rev B 60:17150CrossRefGoogle Scholar
  11. He Z, Maurice JL, Gohier A, Lee CS, Pribat D, Cojocaru CS (2011) Iron catalysts for the growth of carbon nanofibers: Fe, Fe3C or both? Chem Mater 23:5379CrossRefGoogle Scholar
  12. Hines WA, Shanthakumar P, Huang T, Budnick JI, Miller RL, Pease DM, Perry DM (2009) Magnetic and structural study of fcc γ -Fe precipitates in Cu. Phys Status Solidi B 246:2154CrossRefGoogle Scholar
  13. Jouffrey B, Schattschneider P, Hébert C (2004) The magic angle: a solved mystery. Ultramicroscopy 102:61CrossRefGoogle Scholar
  14. Kincaid BM, Meixner AE, Platzman PM (1978) Carbon K edge in graphite measured using electron-energy-loss spectroscopy. Phys Rev Lett 40:1296CrossRefGoogle Scholar
  15. Klein J, Campbell SJ, Aubertin F, Gonser U, Schneeweiss O (1991) γ-Fe precipitation in Cu97Fe3 and Cu75Au24Fe1. Phys Status Solidi B 166:87CrossRefGoogle Scholar
  16. Kurde J, Ponpandian N, Luo J, Weis C, Baberschke K, Srivastava P, Wende H (2007) Scattering-path analysis and magnetic scattering properties of Fe/Ag(100) films: a temperature-dependent magnetic EXAFS study. Phys Rev B 76:224418CrossRefGoogle Scholar
  17. Li DC, Dai L, Huang S, Mau AWH, Wang ZL (2000) Structure and growth of aligned carbon nanotube films by pyrolysis. Chem Phys Lett 316:349CrossRefGoogle Scholar
  18. Ling T, Yu H, Liu X, Shen Z, Zhu J (2008) Five-fold twinned nanorods of fcc Fe: synthesis and characterization. Cryst Growth Des 8:4340CrossRefGoogle Scholar
  19. Ling T, Zhu J, Yu H, Xie L (2009) Size effect on crystal morphology of faceted face-centered cubic Fe nanoparticles. J Phys Chem C 113:9450CrossRefGoogle Scholar
  20. Lyubutin IS, Anosova OA, Frolov KV, Sulyanov SN, Okotrub AV, Kudashov AG, Bulusheva LG (2012) Iron nanoparticles in aligned arrays of pure and nitrogen-doped carbon nanotubes. Carbon 50:2628CrossRefGoogle Scholar
  21. Massalski TB, Okamoto H (1992) Binary alloys phase diagrams. ASM International, Materials Park, OHGoogle Scholar
  22. Mönch I, Leonhardt A, Meye A, Hampel S, Kozhuharova-Koseva R, Elefant D, Wirth MP, Büchner B (2007) Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical application. J Phys Conf Series 61:820CrossRefGoogle Scholar
  23. Moruzzi VL, Marcus PM, Schwarz K, Mohn P (1986) Ferromagnetic phases of bcc and fcc Fe, Co, and Ni. Phys Rev B 34:1784CrossRefGoogle Scholar
  24. Shen J, Ohresser PCh, Klaua M, Barthel J, Kirschner J (1998) Magnetic moment of fcc Fe(111) ultrathin films by ultrafast deposition on Cu(111). Phys Rev Lett 80:1980CrossRefGoogle Scholar
  25. Stern EA, Rehr JJ (1983) Many-body aspects of the near-edge structure in X-ray absorption. Phys Rev B 27:3351CrossRefGoogle Scholar
  26. Stöhr J (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. In: Koningsberger DC, Prins R (eds) Chemical analysis: a series of monographs on analytical chemistry, vol 92. Wiley, New York, p 443Google Scholar
  27. Winkler A, Mühl T, Menzel S, Koseva RK, Hampel S, Leonhardt A, Büchner B (2006) Magnetic force microscopy sensors using iron-filled carbon nanotubes. J Appl Phys 99:104905CrossRefGoogle Scholar
  28. Zhou YM, Zhang WQ, Zhong LP, Wang DS (1995) Theoretical prediction of ferrimagnetism in face-centered cubic iron. J Magn Magn Mater 145:L273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • L. Camilli
    • 1
  • P. Castrucci
    • 1
    Email author
  • M. Scarselli
    • 1
  • E. Gautron
    • 2
  • S. Lefrant
    • 2
  • M. De Crescenzi
    • 1
  1. 1.Dipartimento di Fisica and Unità CNISMUniversità Roma Tor VergataRomeItaly
  2. 2.Institut des Matériaux Jean Rouxel (IMN)Université de NantesNantes Cedex 3France

Personalised recommendations