Zigzag-shaped nickel nanowires via organometallic template-free route

  • Meital Shviro
  • András Paszternák
  • Avraham Chelly
  • David Zitoun
Research Paper


In this manuscript, the formation of nickel nanowires of 10–20 nm in diameter (average size: several tens to hundreds of μm long and 1.0–1.5 μm wide) at low temperature is found to be driven by dewetting of liquid organometallic precursors during spin-coating process and by self-assembly of Ni clusters. Elaboration of metallic thin films by low-temperature deposition technique makes the preparation process compatible with most of the substrates. The use of iron and cobalt precursor shows that the process could be extended to other metallic systems. In this work, AFM and SEM are used to follow the assembly of Ni clusters into straight or zigzag lines. The formation of zigzag structure is specific to the Ni precursor at appropriate preparation parameters. This template-free process allows a control of anisotropic structures with homogeneous sizes and angles on the standard Si/SiO2 surface.


Electroless deposition Nickel Nanowires Coating Magnetic 



The authors thank Dr Olga Girshevitz for assistance with AFM.

Supplementary material

11051_2013_1823_MOESM1_ESM.docx (206 kb)
Supplementary material 1 (DOCX 205 kb)


  1. Choi S, Stassi S, Pisano AP, Zohdi TI (2010) Coffee-ring effect-based three dimensional patterning of micro/nanoparticle assembly with a single droplet. Langmuir 26:11690–11698CrossRefGoogle Scholar
  2. Deegan RD (2000) Pattern formation in drying drops. Phys Rev E 61:475–485CrossRefGoogle Scholar
  3. Deegan RD et al (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829CrossRefGoogle Scholar
  4. Felici R, Jeutter NM, Mussi V, de Mongeot FB, Boragno C, Valbusa U, Toma A, Zhang YW, Rau C, Robinson IK (2007) In situ study of the dewetting behavior of Ni-films on oxidized Si(001) by GISAXS. Surf Sci 601:4526–4530CrossRefGoogle Scholar
  5. Fodor PS, Tsoi GM, Wenger LE (2002) Fabrication and characterization of Co1–xFex alloy nanowires. J Appl Phys 91:8186–8188CrossRefGoogle Scholar
  6. He X et al (2007) Synthesis and characterization of silver nanowires with zigzag morphology in N, N-dimethylformamide. J Solid State Chem 180:2262–2267CrossRefGoogle Scholar
  7. Hyun DC et al (2011) Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes. Adv Mater 23:2946–2950CrossRefGoogle Scholar
  8. Kim H et al (2008) Spatial control of coherent anti-stokes emission with height-modulated gold zig-zag nanowires. Nano Lett 8:2373–2377CrossRefGoogle Scholar
  9. Lacroix L-M et al (2011) Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett 11:1641–1645CrossRefGoogle Scholar
  10. Lee J et al (2006) Highly conformal deposition of pure Co films by MOCVD using Co2(CO)8 as a precursor. J Electrochem Soc 153:G539–G542CrossRefGoogle Scholar
  11. Müller CM, Spolenak R (2010) Microstructure evolution during dewetting in thin Au films. Acta Mater 58:6035–6045CrossRefGoogle Scholar
  12. Park S et al (2000) Synthesis and magnetic studies of uniform iron. J Am Chem Soc 122:8581–8582CrossRefGoogle Scholar
  13. Petersen J, Mayr SG (2008) Dewetting of Ni and NiAg solid thin films and formation of nanowires on ripple patterned substrates. J Appl Phys 103:023520-1-8Google Scholar
  14. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117CrossRefGoogle Scholar
  15. Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP (2002) Synthesis of hcp-Co nanodisks. J Am Chem Soc 124:12874–12880CrossRefGoogle Scholar
  16. Senocq F et al (2006) Iron thin films from Fe(CO)5 and FeCp2/H2O under Atmospheric pressure. J Electrochem Soc 153:G1025–G1031CrossRefGoogle Scholar
  17. Shviro M, Zitoun D (2012) Low temperature, template-free route to nickel thin films. Nanoscale 4:762–767CrossRefGoogle Scholar
  18. Shviro M, Zitoun D (2013) Nickel nanocrystals: fast synthesis of cubes, pyramids and tetrapods. RSC Adv 3:1380–1387CrossRefGoogle Scholar
  19. Sikora E, Macdonal D (2002) Nature of the passive film on nickel. Electrochim Acta 48:69–77CrossRefGoogle Scholar
  20. Sun S, Murray CBJ (1999) Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. Appl Phys 85:4325–4330Google Scholar
  21. Xia Y, Qin D, Yin Y (2001) Surface patterning and its application in wetting dewetting studies. Curr Opin Colloid Interface Sci 6:54–64CrossRefGoogle Scholar
  22. Yang HT et al (2004) Stable cobalt nanoparticles passivated with oleic acid and triphenylphosphine. Nanotechnology 15:70–74CrossRefGoogle Scholar
  23. Ye J, Thompson CV (2010) Mechanisms of complex morphological evolution during solid-state dewetting of single-crystal nickel thin films. Appl Phys Lett 97:071904-1-3Google Scholar
  24. Ye J, Thompson CV (2011a) Anisotropic edge retraction and hole growth during solid-state dewetting of single crystal nickel thin films. Acta Mater 59:582–589CrossRefGoogle Scholar
  25. Ye J, Thompson CV (2011b) Templated solid-state dewetting to controllably produce complex patterns. Adv Mater 23:1567–1571CrossRefGoogle Scholar
  26. Yu C et al (2003) Fabrication and physical properties of permalloy nano-size wires. Phys B 327:247–252CrossRefGoogle Scholar
  27. Zhang J et al (2002) Self-assembled nanostructures. Kluwer, DordrechtGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Meital Shviro
    • 1
  • András Paszternák
    • 1
  • Avraham Chelly
    • 2
  • David Zitoun
    • 1
  1. 1.Department of ChemistryBar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar Ilan UniversityRamat GanIsrael
  2. 2.Department of EngineeringBar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar Ilan UniversityRamat GanIsrael

Personalised recommendations