Advertisement

Structural investigations on differently sized monodisperse iron oxide nanoparticles synthesized by remineralization of apoferritin molecules

  • Aladin Ullrich
  • Siegfried Horn
Research Paper

Abstract

We have investigated the structure of iron oxide nanoparticles produced by remineralization and thermal treatment of horse spleen apoferritin molecules. The described procedure allows to synthesize particles with diameters ranging from 4 to 7 nm in size. Atomic force microscopy and transmission electron microscopy (TEM) investigations were performed for shape and size determination, whereas energy-dispersive X-ray (TEM-EDX), high-resolution TEM, and electron diffraction measurements revealed the chemical composition and crystal structure of the particles. We found predominantly single crystalline nanoparticles with a hematite-like (α-Fe2O3) structure.

Keywords

Iron oxide nanoparticles Hematite nanoparticles Crystal structure of iron oxide nanoparticles Ferritin Remineralized ferritin 

References

  1. Bermejo E, Becue T, Lacour C, Quarton M (1997) Synthesis of nanoscaled iron particles from freeze-dried precursors. Powder Technol 94:29–34CrossRefGoogle Scholar
  2. Bielig H-J, Bayer E (1955) Die Naturwissenschaften 5:125–126CrossRefGoogle Scholar
  3. Bomatí-Miguel O, Mazeina L, Navrotsky A, Veintemillas-Verdaguer S (2008) Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem Mater 20:591–598CrossRefGoogle Scholar
  4. Brown, G (1980) Crystal structures of clay minerals and their X-ray identification Mineralogical Society, LondonGoogle Scholar
  5. Chasteen ND, Harrison PM (1999) Mineralization in ferritin: an efficient means of iron storage. J Struct Biol 126:182–194CrossRefGoogle Scholar
  6. Cornell RM, Schwertmann U (2003) The iron-oxides: structure, properties, reactions, occurences and uses. WILEY-VCH, WeinheimGoogle Scholar
  7. Fischbach FA, Anderegg JW (1965) An X-ray scattering study of ferritin and apoferritin. J Mol Biol 14:458–473CrossRefGoogle Scholar
  8. Granick S, Michaelis Leonor (1943) Ferritin: iI. apoferritin of horse spleen. J Biol Chem 147:91–97Google Scholar
  9. Harrison PM, Fischbach FA, Hoy TG, Haggis GH (1967) Ferric oxyhydroxide core of ferritin. Nature 216:1188–1190CrossRefGoogle Scholar
  10. Hazel-Ann Hosein, Strongin DR, Allen M, Douglas Trevor (2004) Iron and cobalt oxide and metallic nanoparticles prepared from ferritin. Langmuir 20:10283CrossRefGoogle Scholar
  11. Jacob J, Khadar MA (2010) VSM and Mössbauer study of nanostructured hematite. J Magn Magn Mater 322:614–621CrossRefGoogle Scholar
  12. Kim S-W, Seo H-Y, Lee Y-B, Park YS, Kim K-S (2008) Crystal structure of ferihydrite nanoparticles synthesized in ferritin. Bull Korean Chem Soc 29:1969–1972CrossRefGoogle Scholar
  13. Krispin M, Ullrich A, Horn S (2012) Crystal structure of iron-oxide nanoparticles synthesized from ferritin. J Nanopart Res 14:669–680CrossRefGoogle Scholar
  14. Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003) The removal of carbon monoxide by iron-oxide nanoparticles. Appl Catal B 43:151–162CrossRefGoogle Scholar
  15. Macara IG, Hoy TG, Harrison PM (1972) The formation of ferritin from apoferritin. Biochem J 126:151–162Google Scholar
  16. Massover, William (1993) Ultrastructure of ferritin and apoferritin: E review. micron 24, No 4:389–437Google Scholar
  17. Meldrum FC, Douglas LeviS, Arosio P, Mann S (1995) Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. J Inorg Biochem 58:59–68CrossRefGoogle Scholar
  18. Mitchell DRG (2008) DiffTools: software tools for electron diffraction in digital micrograph. Microsc Res Tech 71:588–593CrossRefGoogle Scholar
  19. Morris RV, Lauer HV, Schulze DG, Burns RG (1991) Preparation and characterization of a nanophase hematite powder. Abstr Lunar Planet Sci Conf 22:927–928Google Scholar
  20. Navrotsky A, Mazeina L, Majzlan J (2008) Size-driven structural and thermodynamic complexity in iron-oxides. Science 319:1635–1638CrossRefGoogle Scholar
  21. Park J, An K, Hwang Y, Park J, Noh H, Kim J, Park J, Hwang N, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRefGoogle Scholar
  22. Petty MC (1996) Langmuir-blodgett Films–an Introduction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. Pierre TG, St ChanP, Bauchspiess KR, Webb J, Betteridge S, Walton S, Dickson DPE (1996) Synthesis, structure and magnetic properties of ferritin cores with varying composition and degrees of structural order: models for iron oxide deposits in iron-overload diseases. Coord Chem Rev 151:125–143Google Scholar
  24. Roberts GG (ed) (1982) Langmuir-blodgett films. Elsevier, AmsterdamGoogle Scholar
  25. Schimanke G, Martin M (2000) In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3). Solid State Ionics 136–137:1235–1240CrossRefGoogle Scholar
  26. Schwertmann U, Fechter H (1984) The influence of aluminum on iron-oxides: xI. aluminum-substituted maghemite in soils and its formation. Soil Sci Soc Am J 48:1462CrossRefGoogle Scholar
  27. Tronc E, Jolivet JP (1986) Surface effects on magnetically coupled iron oxide “γ-Fe2O3” colloids. Hyperfine Interact 28:525–528CrossRefGoogle Scholar
  28. William Massover, John Cowley (1973) The ultrastructure of ferritin macromolecules: The lattice structure of the core crystallites. Proc Nat Acad Sci 70(12):3847–3851CrossRefGoogle Scholar
  29. Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21:1778–1780CrossRefGoogle Scholar
  30. Xu Z, Shen C, Tian Y, Shi X, Gao H-J (2010) Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor. Nanoscale 2:1027–1032CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Physics, University of AugsburgAugsburgGermany

Personalised recommendations