Absorption and scattering effects by silver nanoparticles near the interface of organic/inorganic semiconductor tandem films

  • Coleen T. Nemes
  • Divya K. Vijapurapu
  • Christopher E. Petoukhoff
  • Gary Z. Cheung
  • Deirdre M. O’CarrollEmail author
Research Paper
Part of the following topical collections:
  1. Nanostructured Materials 2012. Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos


We experimentally and theoretically characterize back-scattering and extinction of Ag nanoparticle (AgNP) arrays on both Si wafer substrates and optically-thick Ag substrates with and without organic poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) bulk-heterojunction thin film coatings. A strong red-shift in back-scattered light wavelength occurs from AgNP arrays on Si as a function of increasing mean nanoparticle diameter (ranging from 30 to 90 nm). Back-scattering from the AgNP array is notably quenched in the wavelength range of strong P3HT absorption when the organic layer is applied. However, back-scattering is enhanced to a degree relative to the uncoated AgNP array on Si at wavelengths greater than the absorption band edge of P3HT. For comparison, the optical properties of AgNPs on an optically-thick Ag substrate are reported with and without P3HT:PCBM thin film coatings. On the reflective Ag substrates, a significant enhancement (by a factor of 7.5) and red-shift of back-scattered light occurred upon coating of the AgNPs with the P3HT:PCBM layer. Additionally, red-edge extinction was enhanced in the P3HT:PCBM layer with the presence of the AgNPs compared to the planar case. Theoretical electromagnetic simulations were carried out to help validate and explain the scattering and extinction changes observed in experiment. Both increasing nanoparticle size and an increasing degree of contact with the Si substrate (i.e., effective index of the nanoparticle environment) are shown to play a role in increasing back- and forward-scattering intensity and wavelength, and in increasing absorption enhancements in both the organic and Si layers. AgNPs placed at the P3HT:PCBM/Si interface give rise to absorption increases in P3HT of up to 18 %, and only enhance Si absorption at wavelengths longer than the absorption band edge of P3HT (by almost 90 % in the 660–1,200 nm wavelength range). These results provide insight into how metal nanoparticles placed near an organic/inorganic interface can be employed for light management in tandem or hybrid organic/inorganic thin-film semiconductor configurations for solar energy harvesting applications or light detection applications.


Silver nanoparticles Conjugated polymer Silicon Light scattering Absorption Surface plasmons Organic 



The authors gratefully acknowledge support from National Science Foundation Grant No. 0903661 “Nanotechnology for Clean Energy IGERT,” a Corning Inc. graduate fellowship, Rutgers’ Institute for Advanced Materials Devices and Nanotechnology, Rutgers’ Aresty Undergraduate Research Fellowship Program, Rutgers’ Research in Science and Engineering (RiSE) Scholarship Program and a Rutgers' Research Council Grant. The authors thank Binxing Yu, Jesse Kohl, Sarah Goodman, and Manika Jain for useful discussions.


  1. Abass A, Shen H, Bienstman P, Maes B (2011) Angle insensitive enhancement of organic solar cells using metallic gratings. J Appl Phys 109:023111CrossRefGoogle Scholar
  2. Al-Kaysi RO, Ghaddar TH, Guirado G (2009) Fabrication of one-dimensional organic nanostructures using anodic aluminum oxide templates. J Nanomater 2009:1–14CrossRefGoogle Scholar
  3. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  4. Bai W, Gan Q, Song G, Chen L, Kafafi Z, Bartoli F (2010) Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics. Opt Express 18:A620–A630CrossRefGoogle Scholar
  5. Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley, WeinheimGoogle Scholar
  6. Bridges CR, Dicarmine PM, Fokina A, Huesmann D, Serefos DS (2013) Synthesis of gold nanotubes with variable wall thicknesses. J Mater Chem A 1:1127–1133CrossRefGoogle Scholar
  7. Brown PJ, Thomas DS, Köhler A, Wilson JS, Kim J-S, Ramsdale CM, Sirringhaus H, Friend RH (2003) Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys Rev B 67:064203CrossRefGoogle Scholar
  8. Catchpole KR, Pillai S (2006) Absorption enhancement due to scattering by dipoles into silicon waveguides. J Appl Phys 100:44504CrossRefGoogle Scholar
  9. Catchpole KR, Polman A (2008a) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113CrossRefGoogle Scholar
  10. Catchpole KR, Polman A (2008b) Plasmonic solar cells. Opt Express 16:21793–21800CrossRefGoogle Scholar
  11. Curry A, Nusz G, Chilkoti A, Wax A (2005) Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microscopy. Opt Express 13:2668–2677CrossRefGoogle Scholar
  12. Evanoff DD Jr, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J Phys Chem B 108:13957–13962CrossRefGoogle Scholar
  13. Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391–4397CrossRefGoogle Scholar
  14. Ferry VE, Vershuuren MA, Li HBT, Schropp REI, Atwater HA, Polman A (2009) Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Appl Phys Lett 95:183503CrossRefGoogle Scholar
  15. Ferry VE, Munday JN, Atwater HA (2010a) Design considerations for plasmonic photovoltaics. Adv Mater 22:4794–4808CrossRefGoogle Scholar
  16. Ferry VE, Verschuuren MA, Li HBT, Verhagen E, Walters RJ, Schropp REI, Atwater HA, Polman A (2010b) Light trapping in ultrathin plasmonic solar cells. Opt Express 18:A237–A245CrossRefGoogle Scholar
  17. Gan G, Bartoli FJ, Kafafi ZH (2013) Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Adv Mater. doi: 10.1002/adma.201203323
  18. Hägglund C, Zäch M, Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110CrossRefGoogle Scholar
  19. Hill HD, Millstone JE, Banholzer MJ, Mirkin CA (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3:418–424CrossRefGoogle Scholar
  20. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  21. Kirkengena M, Bergli J, Galperin YM (2007) Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J Appl Phys 102:093713CrossRefGoogle Scholar
  22. Konda RB et al (2007) Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. Appl Phys Lett 91:191111CrossRefGoogle Scholar
  23. Liao W-S, Yang T, Castellana ET, Kotaoke S, Cremer PS (2006) A rapid prototyping approach to Ag nanoparticle fabrication in the 10–100 nm range. Adv Mater 18:2240–2243CrossRefGoogle Scholar
  24. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  25. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101CrossRefGoogle Scholar
  26. Masuda H, Satoh M (1996) Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 35:L126–L129CrossRefGoogle Scholar
  27. Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71:2770–2772CrossRefGoogle Scholar
  28. Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–491CrossRefGoogle Scholar
  29. Monestier F, Simon JJ, Torchio P, Escoubas L, Flory F, Bailly S, de Bettignies R, Guillerez S, Defranoux C (2007) Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend. Sol Energy Mater Sol Cells 91:405–410CrossRefGoogle Scholar
  30. Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, de Abajo FJG (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805CrossRefGoogle Scholar
  31. Nah Y-C, Kim S-S, Park J-H, Park H-J, Jo J, Kim D-Y (2007) Enhanced electrochromic absorption in Ag nanoparticle embedded conjugated polymer composite films. Electrochem Commun 9:1542–1546CrossRefGoogle Scholar
  32. Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904CrossRefGoogle Scholar
  33. Nehl CL, Hafner JH (2008) Shape-dependent plasmon resonances of gold nanoparticles. J Mater Chem 18:2415–2419CrossRefGoogle Scholar
  34. O’Carroll DM, Collopy AX, Ferry VE, Atwater HA (2010) Surface plasmon assisted absorption in conjugated polymer thin films and devices. In: 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, pp 834–837Google Scholar
  35. Palik ED (1985) Handbook of optical constants of solids. Academic Press, BostonGoogle Scholar
  36. Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486CrossRefGoogle Scholar
  37. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105CrossRefGoogle Scholar
  38. Qiao L, Wang D, Zuo L, Ye Y, Qian J, Chen H, He S (2011) Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres. Appl Energy 88:848–852CrossRefGoogle Scholar
  39. Saeta PN, Ferry VE, Pacifici D, Munday JN, Atwater HA (2009) How much can guided modes enhance absorption in thin solar cells? Opt Express 17:20975–20990CrossRefGoogle Scholar
  40. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRefGoogle Scholar
  41. Sefunc MA, Okyay A, Demir HV (2011) Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations. Opt Express 19:14200–14209CrossRefGoogle Scholar
  42. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402CrossRefGoogle Scholar
  43. Tvingstedt K, Persson N, Inganas O, Rahachou A, Zozoulenko IV (2007) Surface plasmon increase absorption in polymer photovoltaic cells. Appl Phys Lett 91:113514CrossRefGoogle Scholar
  44. Yang M, Li J, Li J, Zhu X (2012) Scattering of light by plasmonic nanoparticles on a silicon substrate. Chem Phys Chem 13:2573–2577CrossRefGoogle Scholar
  45. Zhang Z, Shimizu T, Senz S, Gösele U (2009) Ordered high-density Si [100] nanowire arrays epitaxially grown by bottom imprint method. Adv Mater 21:2824–2828CrossRefGoogle Scholar
  46. Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107:7343–7350CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Coleen T. Nemes
    • 1
    • 2
  • Divya K. Vijapurapu
    • 1
  • Christopher E. Petoukhoff
    • 1
  • Gary Z. Cheung
    • 1
  • Deirdre M. O’Carroll
    • 1
    • 3
    Email author
  1. 1.Department of Materials Science and EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Department of Chemistry, Biochemistry, and PhysicsMarist CollegePoughkeepsieUSA
  3. 3.Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayUSA

Personalised recommendations