Advertisement

Biodegradable nanoparticles for gene therapy technology

  • Hossein Hosseinkhani
  • Wen-Jie He
  • Chiao-Hsi Chiang
  • Po-Da Hong
  • Dah-Shyong Yu
  • Abraham J. Domb
  • Keng-Liang Ou
Review

Abstract

Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes.

Keywords

Gene therapy Viral vectors Non-viral vectors DNA Gene expression 

Notes

Acknowledgments

This study was supported by the research grant of NSC 99-2314-B-011-001-MY3, National Science Council (NSC) of Taiwan.

References

  1. Abdullah S, Yeo WY, Hosseinkhani H, Hosseinkhani M, Masrawa E, Ramasamy R, Rosli R, Rahman SA, Domb AJ (2010) Gene transfer into the lung by nanoparticle dextran–spermine/plasmid DNA complexes. J Biomed Biotechnol 2010:1–10CrossRefGoogle Scholar
  2. Abedini F, Ismail M, Hosseinkhani H, Azmi T, Omar A, PeiPei C, Ismail N, Farber IY, Domb AJ (2010) Toxicity evaluation of dextran–spermine polycation as a tool for gene therapy in vitro. J Cell Animal Biol 4:170–176Google Scholar
  3. Abedini F, Hosseinkhani H, Ismail M, Chen YR, Omar AR, Pei Pei C, Domb AJ (2011a) In vitro intracellular trafficking of biodegradable nanoparticles of dextran–spermine in cancer cell lines. Int J Nanotechnol 8:712–723CrossRefGoogle Scholar
  4. Abedini F, Ismail M, Hosseinkhani H, Ibrahim TA, Omar AR, Chong PP, Bejo MH, Domb AJ (2011b) Effects of CXCR4 siRNA/dextran–spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver. Cancer Manag Res 3:301–309Google Scholar
  5. Abedini F, Hosseinkhani H, Ismail M, Domb AJ, Omar AR, Pei Pei C, Hong PD, Yu DS, Farber IV (2012) Cationized dextran nanoparticles-encapsulated CXCR4–siRNA enhanced correlation between CXCR4 expression and serum ALP in colorectal cancer. Int J Nanomed 7:4159–4168Google Scholar
  6. Amini R, Hosseinkhani H, Jalilian A, Abdullah S, Rosli R (2012) Engineered smart biomaterials for gene delivery. Gene Ther Mol Biol 14:72–86Google Scholar
  7. Aoyama T, Hosseinkhani H, Yamamoto S, Ogawa O, Tabata Y (2002) Enhanced expression of plasmid DNA-cationized gelatin complex by ultrasound in murine muscle. J Control Release 80:345–356CrossRefGoogle Scholar
  8. Atkins RL, Wang D, Burke RD (2000) Localized electroporation: a method for targeting expression of genes in avian embryos. Biotechniques 28:94–96, 98, 100Google Scholar
  9. Banan M, Puri N (2004) The ins and outs of RNAi in mammalian cells. Curr Pharm Biotechnol 5:441–450CrossRefGoogle Scholar
  10. Breunig M, Lungwitz U, Liebl R, Fontanari C, Klar J, Kurtz A, Blunk T, Goepferich A (2005) Gene delivery with low molecular weight linear polyethylenimines. J Gene Med 7:1287–1298CrossRefGoogle Scholar
  11. Chandy T, Sharma CP (1990) Chitosan: as a Biomaterial. Biomater Artif Cells Artif Organs 18:1–24Google Scholar
  12. Chen TH, Yeh CT, Ho YP, Hsu CM, Huang CC, Shiau SS, Liang CK, Chang ML (2009) Hydrodynamics-based transfection of pancreatic duodenal homeobox 1 DNA improves hyperglycemia and is associated with limited complications in diabetic mice. Endocr J 56:783–790CrossRefGoogle Scholar
  13. de la Fuente M, Seijo B, Alonso MJ (2008) Novel hyaluronic acid–chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci 49:2016–2024CrossRefGoogle Scholar
  14. Elangovan S, Jain S, Tsai PC, Margolis HC, Amiji M (2012) Nano-sized calcium phosphate particles for periodontal gene therapy. J Periodontol 84:117–125CrossRefGoogle Scholar
  15. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498CrossRefGoogle Scholar
  16. Eliyahu H, Joseph A, Schillemans JP, Azzam T, Domb AJ, Barenholz Y (2007) Characterization and in vivo performance of dextran–spermine polyplexes and DOTAP/cholesterol lipoplexes administered locally and systemically. Biomaterials 28:2339–2349CrossRefGoogle Scholar
  17. Gaucheron J, Santaella C, Vierling P (2002) Transfection with fluorinated lipoplexes based on fluorinated analogues of DOTMA, DMRIE and DPPES. Biochim Biophys Acta 1564:349–358CrossRefGoogle Scholar
  18. Hashida M, Takemura S, Nishikawa M, Takakura Y (1998) Targeted delivery of plasmid DNA complexed with galactosylated poly(l-lysine). J Control Release 53:301–310CrossRefGoogle Scholar
  19. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166CrossRefGoogle Scholar
  20. Hosseinkhani H (2006) DNA nanoparticles for gene delivery to cells and tissue. Int J Nanotechnol 3:416–461CrossRefGoogle Scholar
  21. Hosseinkhani H (2011) Editorial: on nanomedicine. Int J Nanotechnol 8:615–617Google Scholar
  22. Hosseinkhani H (2012) 3D in vitro technology for drug discovery. Curr Drug Saf 7:37–43CrossRefGoogle Scholar
  23. Hosseinkhani H, Hosseinkhani M (2008a) Suppression effect of basic fibroblast growth factor on mesenchymal stem cell proliferation activity; part I: release characteristics. Chem Today 26:30–32Google Scholar
  24. Hosseinkhani H, Hosseinkhani M (2008b) Suppression effect of basic fibroblast growth factor on mesenchymal stem cell proliferation activity; part II: biological characteristics. Chem Today 26:35–37Google Scholar
  25. Hosseinkhani H, Hosseinkhani M (2009) Biodegradable polymer–metal complexes for gene and drug delivery. Curr Drug Saf 4:79–83CrossRefGoogle Scholar
  26. Hosseinkhani H, Tabata Y (2003) In vitro gene expression by cationized derivatives of an artificial protein with repeated RGD sequences, Pronectin®. J Control Release 86:169–182CrossRefGoogle Scholar
  27. Hosseinkhani H, Tabata Y (2004) PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin®. J Control Release 97:157–171CrossRefGoogle Scholar
  28. Hosseinkhani H, Tabata Y (2005) Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran. J Control Release 108:540–556CrossRefGoogle Scholar
  29. Hosseinkhani H, Tabata Y (2006) Self assembly of DNA nanoparticles with polycations for the delivery of genetic materials into cells. J Nanosci Nanotechnol 6:2320–2328CrossRefGoogle Scholar
  30. Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y (2001) In vitro transfection of plasmid DNA by different-cationized gelatin with or without ultrasound irradiation. Proc Jpn Acad Ser B 77:161–166CrossRefGoogle Scholar
  31. Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y (2002a) Ultrasound enhancement of in vitro transfection of plasmid DNA by a cationized gelatin. J Drug Target 10:193–204CrossRefGoogle Scholar
  32. Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y (2002b) In vitro transfection of plasmid DNA by amine derivatives of gelatin accompanied with ultrasound irradiation. Pharm Res 19:1469–1477CrossRefGoogle Scholar
  33. Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y (2002c) Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. J Control Release 83:287–302CrossRefGoogle Scholar
  34. Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y (2003a) Tumor targeting of gene expression by dextran conjugation based on metal coordination. J Control Release 88:297–312CrossRefGoogle Scholar
  35. Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y (2003b) Ultrasound enhances the transfection of plasmid DNA by non-viral vectors. Curr Pharm Biotechnol 4:109–122CrossRefGoogle Scholar
  36. Hosseinkhani H, Azzam T, Tabata Y, Domb AJ (2004) Dextran–spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection. Gene Ther 11:194–203CrossRefGoogle Scholar
  37. Hosseinkhani H, Inatsugu Y, Hiraoka Y, Inoue S, Shimokawa H, Tabata Y (2005a) Impregnation of plasmid DNA into 3-D scaffold and medium perfusion enhance in vitro DNA expression of mesenchymal stem cells. Tissue Eng 11:1459–1475CrossRefGoogle Scholar
  38. Hosseinkhani H, Inatsugu Y, Hiraoka Y, Inoue S, Tabata Y (2005b) Perfusion culture enhances osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with poly (glycolic acid) fiber. Tissue Eng 11:1476–1488CrossRefGoogle Scholar
  39. Hosseinkhani H, Azzam T, Kobayashi H, Hiraoka Y, Shimokawa H, Domb AJ, Tabata Y (2006a) Combination of 3D tissue engineered scaffold and non-viral gene carrier enhance in vitro DNA expression of mesenchymal stem cells. Biomaterials 27:4269–4278CrossRefGoogle Scholar
  40. Hosseinkhani H, Kushibiki T, Matsumoto K, Nakamura T, Tabata Y (2006b) Enhanced suppression of tumor growth using a combination of NK4 plasmid DNA–PEG engrafted cationized dextran complex and ultrasound irradiation. Cancer Gene Ther 13:479–489CrossRefGoogle Scholar
  41. Hosseinkhani H, Yamamoto M, Inatsugu Y, Hiraoka Y, Inoue S, Shimokawa S, Tabata Y (2006c) Enhanced ectopic bone formation using combination of impregnation of plasmid DNA into 3-D scaffold and bioreactor perfusion culture. Biomaterials 27:1387–1398CrossRefGoogle Scholar
  42. Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y (2006d) Osteogenic differentiation of mesenchymal stem cells in self assembled-peptide amphiphile nanofibers. Biomaterials 27:4079–4086CrossRefGoogle Scholar
  43. Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y (2006e) Ectopic bone formation in collagen sponge-self assembled peptide amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor. Biomaterials 27:5089–5098CrossRefGoogle Scholar
  44. Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H, Tabata Y (2006f) Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials 27:5836–5844CrossRefGoogle Scholar
  45. Hosseinkhani H, Hosseinkhani M, Kobayashi H (2006g) Proliferation and differentiation of mesenchymal stem cells by using self assembly of peptide-amphiphile nanofibers. Biomed Mater 1:8–15CrossRefGoogle Scholar
  46. Hosseinkhani H, Hosseinkhani M, Kobayashi H (2006h) Design of tissue engineered nanoscaffold through self assembly of peptide amphiphile. J Bioact Compat Polym 21:277–296CrossRefGoogle Scholar
  47. Hosseinkhani H, Hosseinkhani M, Khademhosseini A (2006i) Emerging applications of hydrogels and microscale technologies in drug discovery. Drug Discov 1:32–34Google Scholar
  48. Hosseinkhani H, Hosseinkhani M, Khademhosseini A (2006j) Tissue regeneration through self-assembled peptide amphiphile nanofibers. Yakhte Med J 8:204–209Google Scholar
  49. Hosseinkhani H, Kobayashi H, Tabata Y (2006k) Design of tissue-engineered nano-scaffold using peptide-amphiphile for regenerative medicine. Pept Sci 2005:341–344Google Scholar
  50. Hosseinkhani H, Kobayashi H, Tabata Y (2006l) Selective differentiation cardiomyocyte cells by using peptide-amphiphile nanofibers. Pept Sci 2005:63–66Google Scholar
  51. Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y (2007a) Bone regeneration on a collagen sponge-self assembled peptide-amphiphile nanofibers hybrid scaffold. Tissue Eng 13:1–9CrossRefGoogle Scholar
  52. Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H (2007b) Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J Control Release 117:380–386CrossRefGoogle Scholar
  53. Hosseinkhani M, Hosseinkhani H, Khademhosseini A, Bolland F, Kobayashi H, Prat S (2007c) Bone morphogenetic protein-4 enhances cardiomyocytes differentiation of cynomolgus monkey ES cells in knockout serum replacement medium. Stem Cells 25:571–580CrossRefGoogle Scholar
  54. Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Gabrielson NP, Pack DW, Kobayashi H (2008) DNA nanoparticles encapsulated in 3-D tissue engineered scaffold enhance osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 85:47–60Google Scholar
  55. Hosseinkhani H, Hosseinkhani M, Vasheghani E, Nekoomanesh M (2009) In vitro sustained release and degradation study of biodegradable poly (d,l-lactic acid) microspheres loading theophylline. Adv Sci Lett 2:70–77CrossRefGoogle Scholar
  56. Hosseinkhani H, Hosseinkhani M, Hattori S, Matsuoka R, Kawaguchi N (2010) Micro and nanoscale in vitro 3D culture system for cardiac stem cells. J Biomed Mater Res A 94:1–8Google Scholar
  57. Hosseinkhani H, Hosseinkhani M, Chen YR, Subramani K, Domb AJ (2011a) Innovative technology of engineering magnetic DNA nanoparticles for gene therapy. Int J Nanotechnol 8:724–735CrossRefGoogle Scholar
  58. Hosseinkhani M, Hosseinkhani H, Chen YR, Subramani K (2011b) In vitro physicochemical evaluation of DNA nanoparticles. Int J Nanotechnol 8:736–748CrossRefGoogle Scholar
  59. Hosseinkhani H, Hong PD, Yu DS, Chen YR, Farber IV, Domb AJ (2012) Development of 3D in vitro platform technology to engineer mesenchymal stem cells. Int J Nanomed 7:3035–3043CrossRefGoogle Scholar
  60. Hosseinkhani H, Chen YR, He W, Hong PD, Yu DS, Domb AJ (2013a) Engineering of magnetic DNA nanoparticles for tumor-targeted therapy. J Nanopart Res 15:1–10Google Scholar
  61. Hosseinkhani H, Hong PD, Yu DS (2013b) Self-assembled proteins and peptides for regenerative medicine. Chem Rev. doi: 10.1021/cr300131h Google Scholar
  62. Hosseinkhani H, Hiraoka Y, Li CH, Chen YR, Yu DS, Hong PD, Ou KL (2013c) Engineering 3D collagen–IKVAV matrix to mimic neural microenvironment. ACS Chem Neurosci. doi: 10.1021/cn400075h Google Scholar
  63. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MO, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J (2006) RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Mol Ther 14:476–484CrossRefGoogle Scholar
  64. Jo J, Okazaki A, Nagane K, Yamamoto M, Tabata Y (2010) Preparation of cationized polysaccharides as gene transfection carrier for bone marrow-derived mesenchymal stem cells. J Biomater Sci Polym Ed 21:185–204CrossRefGoogle Scholar
  65. Kalhor HR, Shahin F, Fouani MH, Hosseinkhani H (2011) Self-assembly of tissue transglutaminase into amyloid-like fibrils using physiological concentration of Ca2+. Langmuir 27:10766–10784CrossRefGoogle Scholar
  66. Kaneo Y, Ueno T, Tanaka T, Iwase H, Yamaguchi Y, Uemura T (2000) Pharmacokinetics and biodisposition of fluorescein-labeled arabinogalactan in rats. Int J Pharm 201:59–69CrossRefGoogle Scholar
  67. Kaneo Y, Tanaka T, Nakano T, Yamaguchi Y (2001) Evidence for receptor-mediated hepatic uptake of pullulan in rats. J Control Release 70:365–373CrossRefGoogle Scholar
  68. Khan W, Hosseinkhani H, Ickowicz D, Hong PD, Yu DS, Domb AJ (2012) Polysaccharide gene transfection agents. Acta Biomater 8:4224–4232CrossRefGoogle Scholar
  69. Kircheis R, Schuller S, Brunner S, Ogris M, Heider KH, Zauner W, Wagner E (1999) Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med 1:111–120CrossRefGoogle Scholar
  70. Kircheis R, Wightman L, Schreiber A, Robitza B, Rossler V, Kursa M, Wagner E (2001) Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther 8:28–40CrossRefGoogle Scholar
  71. Konishi M, Tabata Y, Kariya M, Hosseinkhani H, Suzuki A, Fukuhara K, Mandai M, Takakura K, Fujii S (2005) In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel. J Control Release 103:7–19CrossRefGoogle Scholar
  72. Krebs MD, Salter E, Chen E, Sutter KA, Alsberg E (2010) Calcium phosphate–DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 92:1131–1138Google Scholar
  73. Lasic DD (1997) Recent developments in medical applications of liposomes: sterically stabilized liposomes in cancer therapy and gene delivery in vivo. J Control Release 48:203–222CrossRefGoogle Scholar
  74. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM (2000) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 7:2023–2027CrossRefGoogle Scholar
  75. Ledley FD (1995) Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum Gene Ther 6:1129–1144CrossRefGoogle Scholar
  76. Lindstrom S, Iles A, Persson J, Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Lindstrom H, Andersson H (2010) Nanoporous titania coating of microwell chips for stem cell culture and analysis. J Biomech Sci Eng 5:272–279CrossRefGoogle Scholar
  77. Liu Y, Mounkes LC, Liggitt HD, Brown CS, Solodin I, Heath TD, Debs RJ (1997) Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol 15:167–173CrossRefGoogle Scholar
  78. Louise C (2006) Nonviral vectors. Methods Mol Biol 333:201–226Google Scholar
  79. Lungwitz U, Breunig M, Blunk T, Gopferich A (2005) Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60:247–266CrossRefGoogle Scholar
  80. Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37CrossRefGoogle Scholar
  81. Madry H, Cucchiarini M, Stein U, Remberger K, Menger MD, Kohn D, Trippel SB (2003) Sustained transgene expression in cartilage defects in vivo after transplantation of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system. J Gene Med 5:502–509CrossRefGoogle Scholar
  82. Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111:253–280CrossRefGoogle Scholar
  83. Mohageri S, Hosseinkhani H, Ebrahimi NG, Solimani M, Kajbafzadeh AM (2010) Proliferation and differentiation of mesenchymal stem cell on collagen sponge reinforced with polypropylene/polyethylene terephathalate blend fibers. Tissue Eng Part A 16:3821–3830CrossRefGoogle Scholar
  84. Mohammad-Taheri M, Vasheghani-Farahani E, Hosseinkhani H, Shojaosadati SA, Soleimani M (2012) Fabrication and characterization of a new MRI contrast agent based on a magnetic dextran–spermine nanoparticle system. Iran Polym J 21:239–251CrossRefGoogle Scholar
  85. Nishikawa M, Yamauchi M, Morimoto K, Ishida E, Takakura Y, Hashida M (2000) Hepatocyte-targeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther 7:548–555CrossRefGoogle Scholar
  86. Ogawara K, Hasegawa S, Nishikawa M, Takakura Y, Hashida M (1999) Pharmacokinetic evaluation of mannosylated bovine serum albumin as a liver cell-specific carrier: quantitative comparison with other hepatotropic ligands. J Drug Target 6:349–360CrossRefGoogle Scholar
  87. Pathak A, Patnaik S, Gupta KC (2009) Polyethylenimine derived nanoparticles for efficient gene delivery. Nucleic Acids Symp Ser (Oxf) 53:57–58CrossRefGoogle Scholar
  88. Sarabi RS, Sadeghi E, Hosseinkhani H, Mahmoudi M, Kalantari M, Adeli M (2011) Polyrotaxane capped quantum dots as new candidates for Cancer diagnosis and therapy. J Nanostruct Polym Nanocomp 7:18–31Google Scholar
  89. Smyth Templeton N (2002) Liposomal delivery of nucleic acids in vivo. DNA Cell Biol 21:857–867CrossRefGoogle Scholar
  90. Stankovics J, Crane AM, Andrews E, Wu CH, Wu GY, Ledley FD (1994) Overexpression of human methylmalonyl CoA mutase in mice after in vivo gene transfer with asialoglycoprotein/polylysine/DNA complexes. Hum Gene Ther 5:1095–1104CrossRefGoogle Scholar
  91. Subramani K, Hosseinkhani H, Khraisat A, Hosseinkhani M, Pathak Y (2009) Targeting nanoparticles as drug delivery systems for cancer treatment. Curr Nanosci 5:134–140CrossRefGoogle Scholar
  92. Subramani K, Mathew R, Hosseinkhani H, Hosseinkhani M (2011) Bone regeneration around dental implants as a treatment for peri-implantitis: a review of the literature. J Biomim Biomater Tissue Eng 11:21–33CrossRefGoogle Scholar
  93. Subramani K, Pathak S, Hosseinkhani H (2012) Recent trend in diabetes treatment using nanotechnology. Dig J Nanomater Bios 7:85–95Google Scholar
  94. Takai T, Ohmori H (1990) DNA transfection of mouse lymphoid cells by the combination of DEAE–dextran-mediated DNA uptake and osmotic shock procedure. Biochim Biophys Acta 1048:105–109CrossRefGoogle Scholar
  95. Takei Y, Maruyama A, Ferdous A, Nishimura Y, Kawano S, Ikejima K, Okumura S, Asayama S, Nogawa M, Hashimoto M, Makino Y, Kinoshita M, Watanabe S, Akaike T, Lemasters JJ, Sato N (2004) Targeted gene delivery to sinusoidal endothelial cells: DNA nanoassociate bearing hyaluronan–glycocalyx. FASEB J 18:699–701Google Scholar
  96. Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15:647–652CrossRefGoogle Scholar
  97. Thakor DK, Teng YD, Tabata Y (2009) Neuronal gene delivery by negatively charged pullulan–spermine/DNA anioplexes. Biomaterials 30:1815–1826CrossRefGoogle Scholar
  98. Tian F, Hosseinkhani H, Estrada G, Kobayashi H (2007) Quantitative method for the analysis of cell attachment using the aligned scaffold structure. J Phys 61:587–590Google Scholar
  99. Tian F, Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Yokoyama Y, Estrada G, Kobayashi H (2008) Quantitative analytical of cell adhesion on aligned micro- and nano-fibers. J Biomed Mater Res A 84:291–299Google Scholar
  100. Turgeman G, Pittman DD, Muller R, Kurkalli BG, Zhou S, Pelled G, Peyser A, Zilberman Y, Moutsatsos IK, Gazit D (2001) Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 3:240–251CrossRefGoogle Scholar
  101. Veron L, Ganee A, Ladaviere C, Delair T (2006) Hydrolyzable p(DMAPEMA) polymers for gene delivery. Macromol Biosci 6:540–554CrossRefGoogle Scholar
  102. Wolfert MA, Schacht EH, Toncheva V, Ulbrich K, Nazarova O, Seymour LW (1996) Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Hum Gene Ther 7:2123–2133CrossRefGoogle Scholar
  103. Woodle MC, Engbers CM, Zalipsky S (1994) New amphipatic polymer–lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjug Chem 5:493–496CrossRefGoogle Scholar
  104. Wright V, Peng H, Usas A, Young B, Gearhart B, Cummins J, Huard J (2002) BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol Ther 6:169–178CrossRefGoogle Scholar
  105. Yang NS, Burkholder J, Roberts B, Martinell B, McCabe D (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 87:9568–9572CrossRefGoogle Scholar
  106. Yaroslavov AA, Sukhishvili SA, Obolsky OL, Yaroslavova EG, Kabanov AV, Kabanov VA (1996) DNA affinity to biological membranes is enhanced due to complexation with hydrophobized polycation. FEBS Lett 384:177–180CrossRefGoogle Scholar
  107. Yoshioka T, Yoshida S, Kurosaki T, Teshima M, Nishida K, Nakamura J, Nakashima M, To H, Kitahara T, Sasaki H (2009) Cationic liposomes-mediated plasmid DNA delivery in murine hepatitis induced by carbon tetrachloride. J Liposome Res 19:141–147CrossRefGoogle Scholar
  108. Yu L, Suh H, Koh JJ, Kim SW (2001) Systemic administration of TerplexDNA system: pharmacokinetics and gene expression. Pharm Res 18:1277–1283CrossRefGoogle Scholar
  109. Zhang X, Oulad-Abdelghani M, Zelkin AN, Wang Y, Haikel Y, Mainard D, Voegel JC, Caruso F, Benkirane-Jessel N (2010) Poly(l-lysine) nanostructured particles for gene delivery and hormone stimulation. Biomaterials 31:1699–1706CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hossein Hosseinkhani
    • 1
    • 3
    • 4
  • Wen-Jie He
    • 1
  • Chiao-Hsi Chiang
    • 3
  • Po-Da Hong
    • 1
    • 2
  • Dah-Shyong Yu
    • 4
    • 6
  • Abraham J. Domb
    • 5
  • Keng-Liang Ou
    • 7
    • 8
    • 9
    • 10
  1. 1.Graduate Institute of Biomedical EngineeringNational Taiwan University of Science and Technology (Taiwan Tech)TaipeiTaiwan
  2. 2.Department of Materials Science and EngineeringNational Taiwan University of Science and Technology (Taiwan Tech)TaipeiTaiwan
  3. 3.School of Pharmacy, National Defense Medical CenterNeihu, TaipeiTaiwan
  4. 4.Nanomedicine Research Center, National Defense Medical CenterTaipeiTaiwan
  5. 5.Institute of Drug Research, School of Pharmacy, Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and SynthesisThe Hebrew University of JerusalemJerusalemIsrael
  6. 6.Division of UrologyTri-Service General HospitalTaipeiTaiwan
  7. 7.Research Center for Biomedical Devices and Prototyping ProductionCollege of Oral Medicine, Taipei Medical UniversityTaipeiTaiwan
  8. 8.Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and EngineeringCollege of Oral Medicine, Taipei Medical UniversityTaipeiTaiwan
  9. 9.Department of DentistryTaipei Medical University-Shuang-Ho HospitalTaipeiTaiwan
  10. 10.Graduate Institute of Biomedical Materials and Tissue EngineeringCollege of Oral Medicine, Taipei Medical UniversityTaipeiTaiwan

Personalised recommendations