Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

  • L. A. Strobel
  • N. Hild
  • D. Mohn
  • W. J. Stark
  • A. Hoppe
  • U. Gbureck
  • R. E. Horch
  • U. Kneser
  • A. R. Boccaccini
Research Paper

Abstract

The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30–35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.

Keywords

Bioactive glass Human bone marrow stromal cells Nanoparticles Osteogenic differentiation Strontium Bone tissue engineering 

Supplementary material

11051_2013_1780_MOESM1_ESM.docx (103 kb)
Supplementary material 1 (DOCX 102 kb)

References

  1. Alaiti MA, Ishikawa M, Masuda H, Simon DI, Jain MK, Asahara T, Costa MA (2012) Up-regulation of miR-210 by vascular endothelial growth factor in ex vivo expanded CD34+ cells enhances cell-mediated angiogenesis. J Cell Mol Med 16:2413–2421Google Scholar
  2. Arora P, Sindhu A, Dilbaghi N, Chaudhury A, Rajakumar G, Rahuman AA (2012) Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans. J Cell Mol Med 16:1991–2000Google Scholar
  3. Aubin JE, Liu F, Malaval L, Gupta AK (1995) Osteoblast and chondroblast differentiation. Bone 17:S77–S83CrossRefGoogle Scholar
  4. Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776CrossRefGoogle Scholar
  5. Boyd D, Carroll G, Towler MR, Freeman C, Farthing P, Brook IM (2009) Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses. J Mater Sci Mater Med 20:413–420CrossRefGoogle Scholar
  6. Brunner TJ, Grass RN, Stark WJ (2006) Glass and bioglass nanopowders by flame synthesis. Chem Commun 13:1384–1386CrossRefGoogle Scholar
  7. Curtis AR, West NX, Su B (2010) Synthesis of nanobioglass and formation of apatite rods to occlude exposed dentine tubules and eliminate hypersensitivity. Acta Biomater 6:3740–3746CrossRefGoogle Scholar
  8. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453CrossRefGoogle Scholar
  9. Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG, Stevens MM (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31:3949–3956CrossRefGoogle Scholar
  10. Gorustovich AA, Roether JA, Boccaccini AR (2010a) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev 16:199–207CrossRefGoogle Scholar
  11. Gorustovich AA, Steimetz T, Cabrini RL, Porto Lopez JM (2010b) Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res A 92:232–237Google Scholar
  12. Hao Y, Yan H, Wang X, Zhu B, Ning C, Ge S (2012) Evaluation of osteoinduction and proliferation on nano-Sr-HAP: a novel orthopedic biomaterial for bone tissue regeneration. J Nanosci Nanotechnol 12:207–212CrossRefGoogle Scholar
  13. Hench L (1998) Bioceramics. J Am Ceram Soc 81:1705–1761CrossRefGoogle Scholar
  14. Hench L, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017CrossRefGoogle Scholar
  15. Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774CrossRefGoogle Scholar
  16. Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, Sautier JM (2011) Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cell Mater 21:130–143Google Scholar
  17. Labbaf S, Tsigkou O, Müller KH, Stevens MM, Porter AE, Jones JR (2011) Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32:1010–1018CrossRefGoogle Scholar
  18. Lao J, Jallot E, Nedelec JM (2008) Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications? Chem Mater 20:4969–4973CrossRefGoogle Scholar
  19. Lim JY, Loiselle AE, Lee JS, Zhang Y, Salvi JD, Donahue HJ (2011) Optimizing the osteogenic potential of adult stem cells for skeletal regeneration. J Orthop Res 29:1627–1633CrossRefGoogle Scholar
  20. Mačković M, Hoppe A, Detsch R, Mohn D, Stark WJ, Spiecker E, Boccaccini AR (2012) Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility. J Nanopart Res 14:966CrossRefGoogle Scholar
  21. Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69:121–129CrossRefGoogle Scholar
  22. Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR (2008) Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. Biomaterials 29:1750–1761CrossRefGoogle Scholar
  23. Mohn D, Bruhin C, Luechinger NA, Stark WJ, Imfeld T, Zehnder M (2010) Composites made of flame-sprayed bioactive glass 45S5 and polymers: bioactivity and immediate sealing properties. Int Endod J 43:1037–1046CrossRefGoogle Scholar
  24. Peng S, Zhou G, Luk KD, Cheung KM, Li Z, Lam WM, Zhou Z, Lu WW (2009) Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem 23:165–174CrossRefGoogle Scholar
  25. Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N (2007) Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci 53:25–35Google Scholar
  26. Stark WJ, Pratsinis SE (2002) Aerosol flame reactors for manufacture of nanoparticles. Powder Technol 126:103–108CrossRefGoogle Scholar
  27. Sun JY, Yang YS, Zhong J, Greenspan DC (2007) The effect of the ionic products of bioglass dissolution on human osteoblasts growth cycle in vitro. J Tissue Eng Regen Med 1:281–286CrossRefGoogle Scholar
  28. Teoh WY, Amal R, Mädler L (2010) Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2:1324–1347CrossRefGoogle Scholar
  29. Vollenweider M, Brunner TJ, Knecht S, Grass RN, Zehnder M, Imfeld T, Stark WJ (2007) Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater 3:936–943CrossRefGoogle Scholar
  30. Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M (2007) Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 86:754–757CrossRefGoogle Scholar
  31. Wu C, Zhou Y, Lin C, Chang J, Xiao Y (2012) Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater 8:3805–3815CrossRefGoogle Scholar
  32. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461–465CrossRefGoogle Scholar
  33. Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L (2011) Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29:981–991CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • L. A. Strobel
    • 1
    • 2
  • N. Hild
    • 3
  • D. Mohn
    • 3
    • 4
  • W. J. Stark
    • 3
  • A. Hoppe
    • 5
  • U. Gbureck
    • 6
  • R. E. Horch
    • 1
  • U. Kneser
    • 1
    • 2
  • A. R. Boccaccini
    • 5
  1. 1.Department of Plastic and Hand SurgeryUniversity of Erlangen-Nuremberg Medical CenterErlangenGermany
  2. 2.Department of Hand, Plastic and Reconstructive Surgery, Burn CentreBG Trauma CentreLudwigshafen/RhineGermany
  3. 3.Department of Chemistry and Applied Biosciences, Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
  4. 4.Department of Preventive Dentistry, Periodontology and Cariology, Center of Dental MedicineUniversity of ZurichZurichSwitzerland
  5. 5.Department of Materials Science and Engineering, Institute of BiomaterialsUniversity of Erlangen-NurembergErlangenGermany
  6. 6.Department for Functional Materials in Medicine and DentistryUniversity of WürzburgWürzburgGermany

Personalised recommendations