Hydrothermal preparation of hydrophobic and hydrophilic nanoparticles of iron oxide and a modification with CM-dextran

  • Anton Repko
  • Daniel Nižňanský
  • Irena Matulková
  • Martin Kalbáč
  • Jana Vejpravová
Research Paper


Hydrophobic and hydrophilic particles of iron oxide (magnetite/maghemite) with diameter of 6–10 nm were prepared by hydrothermal hydrolysis of iron oleate in water/pentanol/oleic acid system at 180 °C. The hydrophobic/hydrophilic nature of resulting particles was controlled by the presence of sodium oleate and by manipulating the ionic strength (with NaCl). The final particle size was controlled by additional organic solvent (octanol or toluene) and by seed growth. Hydrophilic particles (6 nm) were further modified by carboxymethyl-dextran in water to obtain stable and well-dispersed superparamagnetic nanoparticles suitable for biomedical application. The prepared particles were characterized by transmission electron microscopy, thermogravimetry, Fourier-transform infrared spectroscopy, magnetic measurements, Mössbauer spectroscopy, dynamic light scattering, and zeta-potential measurement.


Superparamagnetism Magnetite Carboxymethyl dextran Hydrothermal synthesis Nanocrystals 



The work was supported by the Grant Agency of the Czech Republic under project no. P108/10/1250 and by the Long-Term Research Plan of the Ministry of Education of the Czech Republic (MSM0021620857). We thank Carla Cannas and Andrea Ardu from Università degli studi di Cagliari, Italy for TEM measurements. Magnetization experiments were performed in MLTL (see:, which is supported within the program of Czech Research Infrastructures (project no. LM2011025).


  1. Barrera C, Herrera A, Zayas Y, Rinaldi C (2009) Surface modification of magnetite nanoparticles for biomedical applications. J Magn Magn Mater 321(10):1397–1399 doi: 10.1016/j.jmmm.2009.02.046 CrossRefGoogle Scholar
  2. De Palma R, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G (2007) Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater 19(7):1821–1831 doi: 10.1021/cm0628000 CrossRefGoogle Scholar
  3. Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New YorkGoogle Scholar
  4. Duguet E, Vasseur S, Mornet S, Devoisselle JM (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1(2):157–168 doi: 10.2217/17435889.1.2.157 CrossRefGoogle Scholar
  5. Geng BY, Ma JZ, Liu XW, Du QB, Kong MG, Zhang LD (2007) Hydrophilic polymer assisted synthesis of room-temperature ferromagnetic Fe3O4 nanochains. Appl Phys Lett 90(4):043120. doi: 10.1063/1.2432248 Google Scholar
  6. Huynh R, Chaubet F, Jozefonvicz J (1998) Carboxymethylation of dextran in aqueous alcohol as the first step of the preparation of derivatized dextrans. Angew Makromol Chem 254(1):61–65. doi: 10.1002/(SICI)1522-9505(19980201)254:1<61::AID-APMC61>3.0.CO;2-0
  7. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733 doi: 10.1021/ja0422155 CrossRefGoogle Scholar
  8. Liang X, Wang X, Zhuang J, Chen Y, Wang D, Li Y (2006) Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv Funct Mater 16(14):1805–1813 doi: 10.1002/adfm.200500884 CrossRefGoogle Scholar
  9. Liu G, Hong RY, Guo L, Li YG, Li HZ (2011) Preparation, characterization and MRI application of carboxymethyl dextran coated magnetic nanoparticles. Appl Surf Sci 257(15):6711–6717 doi: 10.1016/j.apsusc.2011.02.110 CrossRefGoogle Scholar
  10. Park YI, Piao Y, Lee N, Yoo B, Kim BH, Choi SH, Hyeon T (2011) Transformation of hydrophobic iron oxide nanoparticles to hydrophilic and biocompatible maghemite nanocrystals for use as highly efficient MRI contrast agent. J Mater Chem 21(31):11472–11477 doi: 10.1039/c1jm10432b CrossRefGoogle Scholar
  11. Repko A, Niznansky D, Poltierova-Vejpravova J (2011) A study of oleic acid-based hydrothermal preparation of CoFe2O4 nanoparticles. J Nanopart Res 13(10):5021–5031 doi: 10.1007/s11051-011-0483-z CrossRefGoogle Scholar
  12. Roca AG, Niznansky D, Poltierova-Vejpravova J, Bittova B, Gonzalez-Fernandez MA, Serna CJ, Morales MP (2009) Magnetite nanoparticles with no surface spin canting. J Appl Phys 105(11):114309. doi: 10.1063/1.3133228 CrossRefGoogle Scholar
  13. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205 doi: 10.1021/ja026501x CrossRefGoogle Scholar
  14. Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279 doi: 10.1021/ja0380852 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Anton Repko
    • 1
  • Daniel Nižňanský
    • 1
  • Irena Matulková
    • 1
    • 2
  • Martin Kalbáč
    • 3
  • Jana Vejpravová
    • 4
  1. 1.Department of Inorganic Chemistry, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Department of Radiation and Chemical PhysicsInstitute of Physics AS CR, v.v.i.Prague 8Czech Republic
  3. 3.J. Heyrovský Institute of Physical Chemistry of the AS CR, v.v.i.Prague 8Czech Republic
  4. 4.Department of Magnetic NanosystemsInstitute of Physics AS CR, v.v.i.Prague 8Czech Republic

Personalised recommendations