Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants

  • Hashmath I. Hussain
  • Zhifeng Yi
  • James E. Rookes
  • Lingxue X. Kong
  • David M. Cahill
Research Paper


We report the uptake by wheat, lupin and Arabidopsis of mesoporous silica nanoparticles functionalised with amine cross-linked fluorescein isothiocyanate (MSN-APTES-FITC). The preparation of these particles at room temperature enabled the synthesis of 20 nm particles that contained a network of interconnected pores around 2 nm in diameter. The uptake and distribution of these nanoparticles were examined during seed germination, in roots of plants grown in a hydroponic system and in whole leaves and roots of plants via vacuum infiltration. The nanoparticles did not affect seed germination in lupin and there was no phytotoxicity. Following germination of wheat and lupin grown in a nutrient solution containing nanoparticles, they were found within cells and cell walls of the emerging root and in the vascular transport elements, the xylem, and in other associated cells. In leaves and roots of Arabidopsis the nanoparticles were found, following vacuum infiltration of whole seedlings, to be taken up by the entire leaf and they were principally found in the intercellular spaces of the mesophyll but also throughout much of the root system. We propose that MSNs could be used as a novel delivery system for small molecules in plants.


Mesoporous silica nanoparticles Fluorescein isothiocyanate 



Mesoporous silica nanoparticle


MSN-aminopropyl triethoxysilane


MSN-APTES-fluorescein isothiocyanate

Supplementary material

11051_2013_1676_MOESM1_ESM.pptx (4.6 mb)
Fig. S1 Further examples of MSN-APTES-FITC by wheat roots. a bright field image of control root treated with MSN, b autofluorescene from the cell wall treated with MSN c bright field image of wheat root germinated in the presence of MSN-APTES-FITC, dwhite arrows indicates aggregates of MSN-APTES-FITC accumulated inside the cell and autofluorescence from the cell wall is observed, e bright field image of wheat root germinated in the presence of MSN-APTES-FITC where white arrows indicate the accumulation of aggregated MSN-FITC and f Accumulation of fluorescing MSN-APTES-FITC aggregates indicated by white arrowheads. Scale baraf (50 μm) (PPTX 4702 kb)


  1. Abarrategi A, Gutiérrez MC, Moreno-Vicente C, Hortigüela MJ, Ramos V, López-Lacomba JL, Ferrer ML, del Monte F (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29(1):94–102CrossRefGoogle Scholar
  2. Adani F, Papa G, Schievano A, Cardinale G, D’Imporzano G, Tambone F (2010) Nanoscale structure of the cell wall protecting cellulose from enzyme attack. Environ Sci Technol 45(3):1107–1113CrossRefGoogle Scholar
  3. Alexiou C, Jurgons R, Schmid R, Hilpert A, Bergemann C, Parak F, Iro H (2005) In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J Magn Magn Mater 293(1):389–393CrossRefGoogle Scholar
  4. Belanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93(4):402–412CrossRefGoogle Scholar
  5. Campbell JL, Arora J, Cowell SF, Garg A, Eu P, Bhargava SK, Bansal V (2011) Quasi-cubic magnetite/silica core–shell nanoparticles as enhanced MRI contrast agents for cancer imaging. PLoS ONE 6(7):e21857CrossRefGoogle Scholar
  6. Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205(4411):1144–1147CrossRefGoogle Scholar
  7. Chamel A, Pineri M, Escoubes M (1991) Quantitative determination of water sorption by plant cuticles. Plant, Cell Environ 14(1):87–95CrossRefGoogle Scholar
  8. Chen J, Wang W, Xu Y, Zhang X (2011) Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica. J Agric Food Chem 59(1):307–311CrossRefGoogle Scholar
  9. Cherif M, Asselin A, Belanger RR (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84(3):236–242CrossRefGoogle Scholar
  10. Chiang Y-D, Lian H-Y, Leo S-Y, Wang S-G, Yamauchi Y, Wu KCW (2011) Controlling particle size and structural properties of mesoporous silica nanoparticles using the Taguchi method. J Phys Chem C 115(27):13158–13165CrossRefGoogle Scholar
  11. Cifuentes Z, Custardoy L, de la Fuente J, Marquina C, Ibarra MR, Rubiales D, Perez-de-Luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8(1):26CrossRefGoogle Scholar
  12. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134(1):151–160CrossRefGoogle Scholar
  13. Fawe A, Abou-Zaid M, Menzies JG, Belanger RR (1998) Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88(5):396–401CrossRefGoogle Scholar
  14. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121(3):829–838CrossRefGoogle Scholar
  15. Gunning T, Cahill DM (2009) A soil-free plant growth system to facilitate analysis of plant pathogen interactions in roots. J Phytopathol 157(7–8):497–501CrossRefGoogle Scholar
  16. He Q, Cui X, Cui F, Guo L, Shi J (2009) Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition. Microporous Mesoporous Mater 117(3):609–616CrossRefGoogle Scholar
  17. Jamet E, Boudart G, Borderies G, Charmont S, Lafitte C, Rossignol M, Canut H, Pont-Lezica R (2008) Isolation of plant cell wall proteins. In: Posch A (ed) 2D PAGE: sample preparation and fractionation. Humana Press, New York, pp 187–201CrossRefGoogle Scholar
  18. Jang HR, Oh H-J, Kim J-H, Jung KY (2013) Synthesis of mesoporous spherical silica via spray pyrolysis: pore size control and evaluation of performance in paclitaxel pre-purification. Microporous Mesoporous Mater 165:219–227CrossRefGoogle Scholar
  19. Kauss H, Seehaus K, Franke R, Gilbert S, Dietrich RA, Kroger N (2003) Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J 33(1):87–95CrossRefGoogle Scholar
  20. Kordon HA (1992) Seed viability and germination: a multi-purpose experimental system. J Biol Educ 26(4):247–251CrossRefGoogle Scholar
  21. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10(7):2296–2302CrossRefGoogle Scholar
  22. Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, Mayne-L’Hermite M, Taran F, Dive V, Carrière M (2012) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227–228:155–163CrossRefGoogle Scholar
  23. Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499CrossRefGoogle Scholar
  24. Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147(2):422–428CrossRefGoogle Scholar
  25. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585CrossRefGoogle Scholar
  26. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132Google Scholar
  27. Liu C, Wang X, Lee S, Pfefferle LD, Haller GL (2012) Surfactant chain length effect on the hexagonal-to-cubic phase transition in mesoporous silica synthesis. Microporous Mesoporous Mater 147(1):242–251CrossRefGoogle Scholar
  28. Ma K, Sai H, Wiesner U (2012) Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles. J Am Chem Soc 134(32):13180–13183CrossRefGoogle Scholar
  29. Martin-Ortigosa S, Valenstein JS, Lin VSY, Trewyn BG, Wang K (2012) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22(17):3576–3582CrossRefGoogle Scholar
  30. Meyer DE, Curran MA, Gonzalez MA (2009) An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environ Sci Technol 43(5):1256–1263CrossRefGoogle Scholar
  31. Nair R, Poulose A, Nagaoka Y, Yoshida Y, Maekawa T, Kumar D (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21(6):2057–2068CrossRefGoogle Scholar
  32. Navarro E, Baun A, Behra R, Hartmann N, Filser J, Miao A-J, Quigg A, Santschi P, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386CrossRefGoogle Scholar
  33. Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211–212:427–435CrossRefGoogle Scholar
  34. Nooney RI, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin AE (2002) Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater 14(11):4721–4728CrossRefGoogle Scholar
  35. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134(13):5722–5725CrossRefGoogle Scholar
  36. Pereira C, Biernacki K, Rebelo SLH, Magalhães AL, Carvalho AP, Pires J, Freire C (2009) Designing heterogeneous oxovanadium and copper acetylacetonate catalysts: Effect of covalent immobilisation in epoxidation and aziridination reactions. J Mol Catal A 312:53–64CrossRefGoogle Scholar
  37. Pereira C, Pereira AM, Quaresma P, Tavares PB, Pereira E, Araujo JP, Freire C (2010) Superparamagnetic gamma-Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2]. Dalton Trans 39(11):2842–2854CrossRefGoogle Scholar
  38. Pereira C, Alves C, Monteiro A, Magén C, Pereira AM, Ibarra A, Ibarra MR, Tavares PB, Araújo JP, Blanco G, Pintado JM, Carvalho AP, Pires J, Pereira MFR, Freire C (2011) Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. ACS Appl Mater Interfaces 3(7):2289–2299CrossRefGoogle Scholar
  39. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498CrossRefGoogle Scholar
  40. Rodrigues FA, Benhamou N, Datnoff LE, Jones JB, Belanger RR (2003) Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93(5):535–546CrossRefGoogle Scholar
  41. Rondeau-Mouro C, Defer D, Leboeuf E, Lahaye M (2008) Assessment of cell wall porosity in Arabidopsis thaliana by NMR spectroscopy. Int J Biol Macromol 42(2):83–92CrossRefGoogle Scholar
  42. Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360CrossRefGoogle Scholar
  43. Schönherr J, Luber M (2001) Cuticular penetration of potassium salts: effects of humidity, anions, and temperature. Plant Soil 236(1):117–122CrossRefGoogle Scholar
  44. Shi Y-T, Cheng H-Y, Geng Y, Nan H-M, Chen W, Cai Q, Chen B-H, Sun X-D, Yao Y-W, Li H-D (2010) The size-controllable synthesis of nanometer-sized mesoporous silica in extremely dilute surfactant solution. Mater Chem Phys 120(1):193–198CrossRefGoogle Scholar
  45. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  46. Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254Google Scholar
  47. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479CrossRefGoogle Scholar
  48. Tepfer M, Taylor IE (1981) The permeability of plant cell walls as measured by gel filtration chromatography. Science 213(4509):761–763CrossRefGoogle Scholar
  49. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300CrossRefGoogle Scholar
  50. Wang S (2009) Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater 117(1–2):1–9Google Scholar
  51. Wang L, Roitberg A, Meuse C, Gaigalas AK (2001) Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochim Acta A Mol Biomol Spectrosc 57(9):1781–1791CrossRefGoogle Scholar
  52. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441CrossRefGoogle Scholar
  53. Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12(3):2221–2228CrossRefGoogle Scholar
  54. Wen LX, Li ZZ, Zou HK, Liu AQ, Chen JF (2005) Controlled release of avermectin from porous hollow silica nanoparticles. Pest Manag Sci 61(6):583–590CrossRefGoogle Scholar
  55. Xu H, Yan F, Monson EE, Kopelman R (2003) Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications. J Biomed Mater Res 66A(4):870–879CrossRefGoogle Scholar
  56. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hashmath I. Hussain
    • 1
  • Zhifeng Yi
    • 2
  • James E. Rookes
    • 1
  • Lingxue X. Kong
    • 2
  • David M. Cahill
    • 1
  1. 1.Centre for Chemistry and Biotechnology, School of Life and Environmental SciencesDeakin UniversityGeelongAustralia
  2. 2.Institute for Frontier MaterialsDeakin UniversityGeelongAustralia

Personalised recommendations