Advertisement

Targeting EGFR-overexpressed A431 cells with EGF-labeled silica-coated magnetic nanoparticles

  • Slavko Kralj
  • Matija Rojnik
  • Janko Kos
  • Darko Makovec
Research Paper

Abstract

Human epidermal growth-factor receptor (EGFR) has emerged as an attractive target for cancer therapy. In this study, amino- or carboxyl-functionalized silica-coated maghemite nanoparticles were conjugated with epidermal growth-factor (EGF) using five different binding modes: carbodiimide chemistry, two types of homo-bifunctional cross-linking reagents, and electrostatic interactions between the nanoparticles and the EGF. The nanoparticles and their aqueous suspensions were characterized by transmission electron microscopy, zeta-potential measurements and dynamic light scattering. The binding efficiency of the EGF to the nanoparticles was measured by flow cytometry using a specific anti-EGF antibody. The ability of EGF bioconjugates to target the EGF receptors was tested using EGFR over-expressing A431 cells in comparison to EGFR negative HeLa cells. Our results showed that the bioconjugates where the EGF was bonded by carbodiimide chemistry are the most effective for the specific targeting of EGFR-expressing cells in vitro.

Keywords

Bioconjugation Cellular targeting Colloidal stability Functionalization Magnetic nanoparticles 

Notes

Acknowledgments

The authors are grateful for support of the Ministry of Higher Education, Science and Technology of the Republic of Slovenia within the National Research Program.

References

  1. Artemov D, Mori N, Ravi R, Bhujwalla ZM (2003) Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 63:2723–2727. doi: 10.1002/mrm.10406 Google Scholar
  2. Bachran D, Schneider S, Bachran C, Urban R, Weng A, Melzig MF, Hoffmann C, Kaufmann AM, Fuchs H (2010) Epidermal growth factor receptor expression affects the efficacy of the combined application of saponin and a targeted toxin on human cervical carcinoma cells. Int J Cancer 127:1453–1461. doi: 10.1002/ijc.25123 CrossRefGoogle Scholar
  3. Banarjee SS, Chen D-H (2009) Cyclodextrin-conjugated nanocarrier for magnetically guided delivery of hydrophobic drugs. J Nanopart Res 11:2071–2078. doi: 10.1007/s11051-008-9572-z CrossRefGoogle Scholar
  4. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626. doi: 10.1016/j.addr.2008.08.005 CrossRefGoogle Scholar
  5. Čampelj S, Makovec D, Drofenik M (2008) Preparation and properties of water-based magnetic fluids. J Phys Condens Mater 20:204101. doi: 10.1088/0953-8984/20/20/204101 CrossRefGoogle Scholar
  6. Chen H, Yeh J, Wang L, Khurshid H, Peng N, Wang AY, Mao H (2010) Preparation and control of the formation of single core and clustered nanoparticles for biomedical applications using a versatile amphiphilic diblock copolymer. Nano Res 3:852–862. doi: 10.1007/s12274-010-0056-y CrossRefGoogle Scholar
  7. Cho YS, Yoon TJ, Jang ES, Hong KS, Lee SY, Kim OR, Park C, Kim YJ, Yi GC, Chang K (2010) Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Cancer Lett 299:63–71. doi: 10.1016/j.canlet.2010.08.004 CrossRefGoogle Scholar
  8. Creixell M, Herrera AP, Ayala V, Latorre-Esteves M, Perez-Torres M, Torres-Lugo M, Rinaldi C (2010) Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells. J Magn Magn Mater 322:2244–2250. doi: 10.1016/j.jmmm.2010.02.019 CrossRefGoogle Scholar
  9. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146. doi: 10.1016/j.jconrel.2010.08.027 CrossRefGoogle Scholar
  10. Dutta RK, Sharma PK, Pandey AC (2010) Design and surface modification of potential luminomagnetic nanocarriers for biomedical applications. J Nanopart Res 12:1211–1219. doi: 10.1007/s11051-009-9801-0 CrossRefGoogle Scholar
  11. Gabizon AA (2001) Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 7:223–225Google Scholar
  12. Garcia-Bennett A, Nees M, Fadeel B (2011) In search of the holy grail: folate-targeted nanoparticles for cancer therapy. Biochem Pharmacol 81:976–984. doi: 10.1016/j.bcp.2011.01.023 CrossRefGoogle Scholar
  13. Goldoni S, Iozzo RA, Kay P, Campbell S, McQuillan A, Agnew C, Zhu JX, Keene DR, Reed CC, Iozzo RV (2007) A soluble ectodomain of LRIG1 inhibits cancer cell growth by attenuating basal and ligand-dependent EGFR activity. Oncogene 26:368–381. doi: 10.1038/sj.onc.1209803 CrossRefGoogle Scholar
  14. Jevnikar Z, Obermajer N, Bogyo M, Kos J (2008) The role of cathepsin X in the migration and invasiveness of T lymphocytes. J Cell Sci 121:2652–2661. doi: 10.1242/jcs.023721 CrossRefGoogle Scholar
  15. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J (2007) Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 120:18–26. doi: 10.1016/j.jconrel.2007.03.012 CrossRefGoogle Scholar
  16. Kralj S, Makovec D, Čampelj S, Drofenik M (2010) Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity. J Magn Magn Mater 322:1847–1853. doi: 10.1016/j.jmmm.2009.12.038 CrossRefGoogle Scholar
  17. Kralj S, Drofenik M, Makovec D (2011) Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups. J Nanopart Res 13:2829–2841. doi: 10.1007/s11051-010-0171-4 CrossRefGoogle Scholar
  18. Kralj S, Rojnik M, Romih R, Jagodič M, Kos J, Makovec D (2012) Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles. J Nanopart Res 14:1151–1165. doi: 10.1007/s11051-012-1151-7 CrossRefGoogle Scholar
  19. Laskin JJ, Sandler AB (2004) Epidermal growth factor receptor: a promising target in solid tumours. Cancer Treat Rev 30:1–17. doi: 10.1016/j.ctrv.2003.10.002 CrossRefGoogle Scholar
  20. Liao C, Sun Q, Liang B, Shen J, Shuai X (2011) Targeting EGFR-overexpressing tumor cells using cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80:699–705. doi: 10.1016/j.ejrad.2010.08.005 Google Scholar
  21. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Delivery Rev 63:24–46. doi: 10.1016/j.addr.2010.05.006 CrossRefGoogle Scholar
  22. Meira DD, de Almeida VH, Mororó JS, Nóbrega I, Bardella L, Silva RL, Albano RM, Ferreira CG (2009) Combination of cetuximab with chemoradiation, trastuzumab or MAPK inhibitors: mechanisms of sensitisation of cervical cancer cells. Br J Cancer 101:782–791. doi: 10.1038/sj.bjc.6605216 CrossRefGoogle Scholar
  23. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:167–181. doi: 10.1088/0022-3727/36/13/201 CrossRefGoogle Scholar
  24. Roberts CJ, Williams PM, Davies J, Dawkes AC, Sefton J, Edwards JC, Haymes AG, Bestwick C, Davies MC, Tendler SJB (1995) Real-space differentiation of IgG and IgM antibodies deposited on microtitre wells by scanning force microscopy. Langmuir 11:1822–1826. doi: 10.1021/la00005a063 CrossRefGoogle Scholar
  25. Skaat H, Shafir G, Margel S (2011) Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles. J Nanopart Res 13:3521. doi: 10.1007/s11051-011-0276-4 CrossRefGoogle Scholar
  26. Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM (2012) Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:604–608. doi: 10.1126/science.1216753 CrossRefGoogle Scholar
  27. Suwa T, Ozawa S, Ueda M, Ando N, Kitajima M (1998) Magnetic resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody. Int J Cancer 75:626–634. doi: 10.1002/(SICI)1097-0215(19980209)75:4<626:AID-IJC22>3.0.CO;2-5 CrossRefGoogle Scholar
  28. Taylor JM, Mitchell WM, Cohen S (1972) Epidermal growth factor. J Biol Chem 247:5928–5934Google Scholar
  29. Tiefenauer LX, Kuhne G, Andres RY (1993) Antibody-magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconjug Chem 4:347–352. doi: 10.1021/bc00023a007 CrossRefGoogle Scholar
  30. Vigor KL, Kyrtatos PG et al (2010) Nanoparticles functionalized with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials 31:1307–1315. doi: 10.1016/j.biomaterials.2009.10.036 CrossRefGoogle Scholar
  31. Wang L, Neoh KG, Kang ET, Shuter B (2011) Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials 32:2166–2173. doi: 10.1016/j.biomaterials.2010.11.042 CrossRefGoogle Scholar
  32. Wong HL, Wu XY, Bendayan R (2011) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Delivery Rev 64:686–700. doi: 10.1016/j.addr.2011.10.007 CrossRefGoogle Scholar
  33. Wu SH-Y, Tseng C-L, Lin F-H (2010) A newly developed Fe-doped calcium sulfide nanoparticles with magnetic property for cancer hyperthermia. J Nanopart Res 12:1173–1185. doi: 10.1007/s11051-009-9734-7 CrossRefGoogle Scholar
  34. Wuang SC, Neoh KG, Kang ET, Pack DW, Leckband DE (2007) Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine. J Mater Chem 17:3354–3362. doi: 10.1039/B702983G CrossRefGoogle Scholar
  35. Yang J, Lim E-K, Lee E-S, Suh J-S, Haam S, Huh Y-M (2010) Magnetoplex based on MnFe2O4 nanocrystals for magnetic labeling and MR imaging of human mesenchymal stem cells. J Nanopart Res 12:1275–1283. doi: 10.1007/s11051-009-9837-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Slavko Kralj
    • 1
    • 2
  • Matija Rojnik
    • 3
  • Janko Kos
    • 3
    • 4
  • Darko Makovec
    • 1
    • 2
  1. 1.Department for Materials SynthesisJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  3. 3.Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations