Advertisement

Blocked-micropores, surface functionalized, bio-compatible and silica-coated iron oxide nanocomposites as advanced MRI contrast agent

  • Masih Darbandi
  • Sophie Laurent
  • Martin Busch
  • Zi-An Li
  • Ying Yuan
  • Michael Krüger
  • Michael Farle
  • Markus Winterer
  • Luce Vander Elst
  • Robert N. Muller
  • Heiko Wende
Research Paper
Part of the following topical collections:
  1. Nanostructured Materials 2012. Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos

Abstract

Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. In this article, a systematic study of the design and development of surface-modification schemes for silica-coated iron oxide nanoparticles (IONP) via a one-pot, in situ method at room temperature is presented. Silica-coated IONP were prepared in a water-in-oil microemulsion, and subsequently the surface was modified via addition of organosilane reagents to the microemulsion system. The structure and the morphology of the as synthesized nanoparticles have been investigated by means of transmission electron microscopy (TEM) and measurement of N2 adsorption–desorption. Electron diffraction and high-resolution transmission electron microscopic (TEM) images of the nanoparticles showed the highly crystalline nature of the IONP structures. Nitrogen adsorption indicates microporous and blocked-microporous structures for the silica-coated and amine functionalized silica-coated IONP, respectively which could prove less cytotoxicity of the functionalized final product. Besides, the colloidal stability of the final product and the presence of the modified functional groups on top of surface layer have been proven by zeta-potential measurements. Owing to the benefit from the inner IONP core and the hydrophilic silica shell, the as-synthesized nanocomposites were exploited as an MRI contrast enhancement agent. Relaxometric results prove that the surface functionalized IONP have also signal enhancement properties. These surface functionalized nanocomposites are not only potential candidates for highly efficient contrast agents for MRI, but could also be used as ultrasensitive biological-magnetic labels, because they are in nanoscale size, having magnetic properties, blocked-microporous and are well dispersible in biological environment.

Keywords

Surface functionalization MRI contrast agent Silica shell Nanoparticles Blocked-micropores Iron oxide 

Notes

Acknowledgments

This work was supported by DFG (Project No. WE 2623/3-1). S.L., L.V.E. and R.N.M. thank the ARC (program of Research of the French Community of Belgium, research contract 00/05-258, 05/10-335 and AUWB-2010—10/15-UMONS-5), FNRS, ENCITE, the framework of COST D38 (Metal-Based Systems for Molecular Imaging Applications) and TD1004 (Theragnostics), the European Network of Excellence EMIL (European Molecular Imaging Laboratories) program LSCH-2004-503569 and the Center for Microscopy and Molecular Imaging (CMMI, supported by the European Regional Development Fund and the Walloon Region) for their support.

Supplementary material

11051_2013_1664_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2288 kb)

References

  1. Abou-Hassan A, Bazzi R, Cabuil V (2009) Angew Chem Int Ed 48:7180CrossRefGoogle Scholar
  2. Boissière C, Larbot A, Bourgaux C, Prouzet E, Bunton CA (2001) Chem Mater 13:3580CrossRefGoogle Scholar
  3. Boissière C, Martines MAU, Tokumoto M, Larbot A, Prouzet E (2003) Chem. Mater. 15:509Google Scholar
  4. Chung SH, Lee DW, Kim MS, Lee KY (2011) J Colloid Interface Sci 355:70CrossRefGoogle Scholar
  5. Eggenberger K, Merkulov A, Darbandi M, Nann T, Nick P (2007) Bioconj Chem 18:1879CrossRefGoogle Scholar
  6. Eggenberger K, Frey N, Zienicke B, Siebenbrock J, Schunck T, Fischer R, Bräse S, Birtalan E, Nann T, Nick P (2010) Adv Eng Mater 12:B406CrossRefGoogle Scholar
  7. Gao X, Yu KMK, Tam KY, Tsang SC (2003) Chem Commun 24:2998CrossRefGoogle Scholar
  8. Graf C, Vossen DLJ, Imhof A, Blaaderen AV (2003) Langmuir 19:6693CrossRefGoogle Scholar
  9. Haavik C, Stølen S, Fjellvåg H, Hanfland M, Häusermann D (2000) Am Mineral 85:514Google Scholar
  10. Huang Z, Zhang Y, Tang F (2005) Chem Commun 3:342CrossRefGoogle Scholar
  11. Jana NR, Chen Y, Peng X (2004) Chem Mater 16:3931CrossRefGoogle Scholar
  12. Kamaruddin S, Stephan D (2011) Catal Today 161:53CrossRefGoogle Scholar
  13. Kobayashi Y, Correa-Duarte MA, Liz-Marzàn LM (2001) Langmuir 17:6375CrossRefGoogle Scholar
  14. Li T, Moon J, Morrone AA, Mecholsky JJ, Talham DR, Adair JH (1999) Langmuir 15:4328CrossRefGoogle Scholar
  15. Li Z, Benzhao H, Faai Z (2012) ACS Appl Mater Interfaces 4:192CrossRefGoogle Scholar
  16. Liu F, Cao P, Zhang H, Tian J, Xiao C, Shen C, Li J, Gao H (2005) Adv Mater 17:1893CrossRefGoogle Scholar
  17. Liz-Marzàn LM, Giersig M, Mulvaney P (1996) Langmuir 12:4329CrossRefGoogle Scholar
  18. Mokari T, Sertchook H, Aharoni A, Ebenstein Y, Avnir D, Banin U (2005) Chem Mater 17:258CrossRefGoogle Scholar
  19. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nat Mater 3:891CrossRefGoogle Scholar
  20. Pecharromán C, González-Carreno T, Iglesias JE (1995) Phys Chem Miner 22:21CrossRefGoogle Scholar
  21. Peng S, Sun S (2007) Angew Chem Int Ed 46:4155CrossRefGoogle Scholar
  22. Pinho S, Laurent S, Rocha J, Roch A, Delville MH, Carlos L, Vander Elst L, Muller R, Geraldes C (2012) J Phys Chem 116:2285Google Scholar
  23. Roch A, Gillis P, Ouakssim A (1999a) J Magn Magn Mater 201:77CrossRefGoogle Scholar
  24. Roch A, Muller RN, Gillis P (1999b) J Chem Phys 110:5403CrossRefGoogle Scholar
  25. Selvan ST, Tan TT, Ying JY (2005) Adv Mater 17:1620CrossRefGoogle Scholar
  26. Shin K, Kim JJ, Suh KD (2010) J Colloid Interface Sci 350:581CrossRefGoogle Scholar
  27. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62CrossRefGoogle Scholar
  28. Sun SH, Zeng H, Robinson DBJ (2004) Am Chem Soc 126:273CrossRefGoogle Scholar
  29. Wang YJ, Yan Y, Cui JW, Hosta-Rigau L, Heath JK, Nice EC, Caruso F (2010) Adv Mater 22:4293CrossRefGoogle Scholar
  30. Wu W, Xiao XH, Zhang SF, Zhou JA, Fan LX, Ren F, Jiang CZ (2010) J Phys Chem C 114:16092CrossRefGoogle Scholar
  31. Wu ZX, Li W, Webley PA, Zhao DY (2012) Adv Mater 24:485CrossRefGoogle Scholar
  32. Yang T, Shen C, Li Z, Zhang H, Xiao C, Chen S, Xu Z, Shi D, Li J, Gao H (2005) J Phys Chem B 109:23233CrossRefGoogle Scholar
  33. Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) J Am Chem Soc 127:4990CrossRefGoogle Scholar
  34. Yin Y, Lu Y, Sun Y, Xia Y (2002) Nano Lett 2:427CrossRefGoogle Scholar
  35. Zeng H, Li J, Wang ZL, Liu JP, Sun S (2004) Nano Lett 4:4187CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Masih Darbandi
    • 1
    • 6
  • Sophie Laurent
    • 2
  • Martin Busch
    • 3
  • Zi-An Li
    • 1
  • Ying Yuan
    • 4
  • Michael Krüger
    • 4
  • Michael Farle
    • 1
  • Markus Winterer
    • 3
  • Luce Vander Elst
    • 2
  • Robert N. Muller
    • 2
    • 5
  • Heiko Wende
    • 1
  1. 1.Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenDuisburgGermany
  2. 2.Department of General, Organic and Biomedical Chemistry NMR and Molecular Imaging LaboratoryUniversity of MonsMonsBelgium
  3. 3.Nanoparticle Process Technology, Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenDuisburgGermany
  4. 4.Department of Microsystems Engineering and Freiburg Materials Research CentreUniversity of FreiburgFreiburgGermany
  5. 5.Center for Microscopy and Molecular ImagingGosseliesBelgium
  6. 6.Department of Physics and Vanderbilt Institute of Nanoscale Science and Engineering (VINSE)Vanderbilt UniversityNashvilleUSA

Personalised recommendations