Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles

  • E. LimaJr.
  • T. E. Torres
  • L. M. Rossi
  • H. R. Rechenberg
  • T. S. Berquo
  • A. Ibarra
  • C. Marquina
  • M. R. Ibarra
  • G. F. Goya
Research Paper

Abstract

In this study, magnetic and power absorption properties of a series of iron oxide nanoparticles with average sizes 〈d〉 ranging from 3 to 23 nm were reported. The nanoparticles were prepared by thermal decomposition of Iron(III) acetylacetonate in organic media. From the careful characterization of the magnetic and physicochemical properties of these samples, the specific power absorption (SPA) values experimentally found were numerically reproduced, as well as their dependence with particle size, using a simple model of Brownian and Néel relaxation at room temperature. SPA experiments in ac magnetic fields (H0 = 13 kA/m and f = 250 kHz) indicated that the magnetic and rheological properties played a crucial role determining the heating efficiency at different conditions. A maximum SPA value of 344 W/g was obtained for a sample containing nanoparticles with 〈d〉  = 12 nm and dispersion σ = 0.25. The observed SPA dependence with particle diameter and their magnetic parameters indicated that, for the size range and experimental conditions of f and H studied in this study, both Néel and Brown relaxation mechanisms are important to the heat generation observed.

Keywords

Magnetic nanoparticles Magnetic losses Superparamagnetism Electromagnetic heating 

Notes

Acknowledgments

This study was supported partially from Diputación General de Aragon (DGA) and Ministerio de Economia y Competitividad (MINECO, Project MAT2010-19326), Spain. Partial support from the Brazilian agency FAPESP is also acknowledged. E. Lima Jr. acknowledges financial support from the FAPESP through a postdoctoral fellowship.

Conflict of interest

The authors declare that they do not have any affiliations that would lead to a conflict of interest.

Supplementary material

11051_2013_1654_MOESM1_ESM.jpg (124 kb)
In-phase (χ′) and out-of-phase (χ″) components of the ac magnetic susceptibility as function of temperature measured at different frequencies of samples C04, C05, and C06 as representative of the systems CYY. Supplementary material 1 (JPEG 124 kb)
11051_2013_1654_MOESM2_ESM.jpg (146 kb)
Time dependence of the temperature (T vs. t) for a Fe3O4 NPs of samples APXX and GEXX, and b for samples CYY in ac magnetic field with H0 = 200 Oe and f = 250 kHz. Supplementary material 1 (JPEG 145 kb)

References

  1. Alexander HR (2003) Hyperthermia and its modern use in cancer treatment. Cancer 98(2):219–221CrossRefGoogle Scholar
  2. Alphandery E, Faure S, Raison L, Duguet E, Howse PA, Bazylinski DA (2011) Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J Phys Chem C 115(1):18–22CrossRefGoogle Scholar
  3. Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109(3):083921CrossRefGoogle Scholar
  4. Gonzalez-Fernandez MA, Torres TE, Andres-Verges M, Costo R, de la Presa P, Serna CJ, Morales MR, Marquina C, Ibarra MR, Goya GF (2009) Magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties. J Solid State Chem 182(10):2779–2784CrossRefGoogle Scholar
  5. Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321(13):1947–1950CrossRefGoogle Scholar
  6. Goya GF, Fernandez-Pacheco R, Arruebo M, Cassinelli N, Ibarra MR (2007) Brownian rotational relaxation and power absorption in magnetite nanoparticles. J Magn Magn Mater 316(2):132–135CrossRefGoogle Scholar
  7. Goya GF, Grazu V, Ibarra MR (2008) Magnetic nanoparticles for cancer therapy. Curr Nanosci 4(1):1–16CrossRefGoogle Scholar
  8. Goya GF, Lima Jr. E, Arelaro AD, Torres TE, Rechenberg HR, Rossi L, Marquina C, Ibarra MR (2008) Magnetic hyperthermia with Fe3O4 nanoparticles: the influence of particle size on energy absorption. IEEE T Magn 44(11):4444–4447CrossRefGoogle Scholar
  9. Hergt R, Hiergeist R, Zeisberger M, Schuler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293(1):80–86CrossRefGoogle Scholar
  10. Johannsen M, Thiesen B, Wust P, Jordan A (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperther 26(8):790–795CrossRefGoogle Scholar
  11. Kakol Z, Pribble RN, Honig JM (1989) Magnetocrystalline anisotropy of Fe3(1-d)O4, 0 = d < 0.01. Solid Stat Commun 69(7):793–796CrossRefGoogle Scholar
  12. Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321(21):3650–3651CrossRefGoogle Scholar
  13. Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T-1 magnetic resonance imaging contrast agents. J Am Chem Soc 133(32):12624–12631CrossRefGoogle Scholar
  14. Levy M, Wilhelm C, Siaugue JM, Horner O, Bacri JC, Gazeau F (2008) Magnetically induced hyperthermia: size-dependent heating power of γ-Fe(2)O(3) nanoparticles. J Phys Condens Mat 20(20):204133CrossRefGoogle Scholar
  15. Maier-Hauff K, lrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103(2):317–324CrossRefGoogle Scholar
  16. Natividad E, Castro M, Mediano A (2009) Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater 321(10):1497–1500CrossRefGoogle Scholar
  17. Noh S-H, Na W, Jang J-T, Lee J-H, Lee EJ, Moon SH (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12(7):3716–3721. doi:10.1021/nl301499u Google Scholar
  18. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252(1–3):370–374CrossRefGoogle Scholar
  19. Sun SH, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205CrossRefGoogle Scholar
  20. Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279CrossRefGoogle Scholar
  21. Tanaka K, Narita A, Kitamura N, Uchiyama W, Morita M, Inubushi T, Chujo Y (2010) Preparation for highly sensitive MRI contrast agents using core/shell type nanoparticles consisting of multiple SPIO cores with thin silica coating. Langmuir 26(14):11759–11762CrossRefGoogle Scholar
  22. Thiesen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperther 24(6):467–474CrossRefGoogle Scholar
  23. Torres TE, Roca AG, Morales MP, Ibarra A, Marquina C, Ibarra MR, Goya GF (2010) Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia. J Phys Conf Ser 200(7):072101CrossRefGoogle Scholar
  24. Usov NA (2010) Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 107(12):123909CrossRefGoogle Scholar
  25. Vaishnava PP, Tackett R, Dixit A, Sudakar C, Naik R, Lawes G (2007) Magnetic relaxation and dissipative heating in ferrofluids. J Appl Phys 102(6):063914CrossRefGoogle Scholar
  26. van Landeghem FKH, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow U, Scholz R, Thiesen B, Bruck W, von Deimling A (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30(1):52–57CrossRefGoogle Scholar
  27. Vargas JM, Zysler RD (2005) Tailoring the size in colloidal iron-oxide magnetic nanoparticles. Nanotechnology 16(9):1474–1476CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • E. LimaJr.
    • 1
  • T. E. Torres
    • 2
  • L. M. Rossi
    • 3
  • H. R. Rechenberg
    • 4
  • T. S. Berquo
    • 5
  • A. Ibarra
    • 6
  • C. Marquina
    • 7
  • M. R. Ibarra
    • 8
  • G. F. Goya
    • 9
  1. 1.CONICET & Instituto de Nanociencia y Nanotecnologia & Centro Atómico BarilocheS. C. BarilocheArgentina
  2. 2.Instituto de Nanociencia de Aragón (INA) & Departamento de Física de la Materia Condensada & Laboratorio de Microscopias Avanzadas (LMA)University of ZaragozaZaragozaSpain
  3. 3.Instituto de Química, Universidade de São PauloSão PauloBrazil
  4. 4.Instituto de Física, Universidade de São PauloSão PauloBrazil
  5. 5.Institute of Rock Magnetism, University of MinnesotaMinneapolisUSA
  6. 6.INA & LMAUniversity of ZaragozaZaragozaSpain
  7. 7.Departamento de Física de la Materia Condensada & Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC, Universidad de ZaragozaZaragozaSpain
  8. 8.INA & Departamento de Física de la Materia Condensada & LMAUniversity of ZaragozaZaragozaSpain
  9. 9.INA & Departamento de Física de la Materia CondensadaUniversity of ZaragozaZaragozaSpain

Personalised recommendations