Advertisement

Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies

  • Kashmira P. TankEmail author
  • Kiran S. Chudasama
  • Vrinda S. Thaker
  • Mihir J. JoshiEmail author
Research Paper

Abstract

Hydroxyapatite (Ca10(PO4)6(OH)2; HAP) is a major mineral component of the calcified tissues, and it has various applications in medicine and dentistry. In the present investigation, cobalt-doped hydroxyapatite (Co-HAP) nanoparticles were synthesized by surfactant-mediated approach and characterized by different techniques. The EDAX was carried out to estimate the amount of doping in Co-HAP. The transmission electron microscopy result suggested the transformation of morphology from needle shaped to spherical type on increasing the doping concentration. The powder XRD study indicated the formation of a new phase of brushite for higher concentration of cobalt. The average particle size and strain were calculated using Williamson–Hall analysis. The average particle size was found to be 30–60 nm. The FTIR study confirmed the presence of various functional groups in the samples. The antimicrobial activity was evaluated against four organisms Pseudomonas aeruginosa and Shigella flexneri as Gram negative as well as Micrococcus luteus and Staphylococcus aureus as Gram positive. The hemolytic test result suggested that all samples were non-hemolytic. The photoluminescence study was carried out to identify its possible applicability as a fluorescent probe.

Keywords

Hydroxyapatite Nanoparticles Transmission electron microscopy Powder XRD Antimicrobial activity Hemolysis Photoluminescence study 

Notes

Acknowledgments

The authors are thankful to UGC, New Delhi, for funding under SAP-DRS and Dr. K. V. R Murthy and Dr. Y. S. Gandhi (Applied Physics Department, M. S. University of Baroda) for luminescence data. The authors also thank Prof. H. H. Joshi and Prof. S. P. Singh for their keen interest. The authors are thankful to Dr. A.D.B. Vaidya for useful guidance and discussion. The author (KPT) is thankful to UGC, New Delhi, for SRF under Meritorious Students Scheme.

References

  1. Araujo TS, Macedo ZS, Oliveira PASC, Valerio MEG (2007) Production and characterization of pure and Cr3+-doped hydroxyapatite for biomedical applications as fluorescent probes. J Mater Sci 42:2236–2243CrossRefGoogle Scholar
  2. Berry EE (1967) The structure and composition of some calcium-deficient apatites-II. J Inorg Nucl Chem 29:1585–1586CrossRefGoogle Scholar
  3. Bhatt K, Gokani S, Bagatharia S, Thaker V (2003) A comparative studies on antimicrobial activities of some medicinal plants against Bacillus Sp. Asian J Microbial Biotech Env Sci 5(4):455–462Google Scholar
  4. Burton WK, Cabrera N, Frank FC (1951) The growth of crystals and the equilibrium structure of their surfaces. Phil Trans R Soc Lond 243:299–358CrossRefGoogle Scholar
  5. Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27(11):2331–2339CrossRefGoogle Scholar
  6. Capanna R, Morris HG, Campanacci D, Ben MD, Campanacci M (1994) Modular uncemented prosthetic reconstruction after resection of tumours of the distal femur. J Bone Joint Surg Br 76B:178–186Google Scholar
  7. Chaudhry AA, Haque S, Kellici S, Boldrin P, Rehman I, Khalid FA, Darr JA (2006) Instant nano- hydroxyapatite: a continuous and rapid hydrothermal synthesis. Chem Commun (Camb) 4(21):2286–2288CrossRefGoogle Scholar
  8. Chen Y, Zheng X, Xie Y, Ding C, Ruan H, Fan C (2008) Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J Mater Sci Mater Med 19(12):3603–3609CrossRefGoogle Scholar
  9. Cho JS, Jung DS, Han JM, Kang YC (2008) Nanosized hydroxyapatite powders prepared by flame spray pyrolysis. J Ceramic Process Res 9(4):348–352Google Scholar
  10. Ciobanu CS, Iconaru SL, Massuyeau F, Constantin LV, Costescu A, Predoi D (2012) Synthesis, structure, and luminescent properties of europium-doped hydroxyapatite nanocrystalline powder. J Nanomater. doi: 10.1155/2012/942801 Google Scholar
  11. Coelho JM, Moreira JA, Almeidaa A, Monteiro FJ (2010) Synthesis and characterization of HAp nanorods from a cationic surfactant template method. J Mater Sci Mater Med 21(9):2543–2591CrossRefGoogle Scholar
  12. D′ıaz M, Barba F, Miranda M, Guitian F, Torrecillas R, Moya JS (2009) Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. J Nanomater. doi: 10.1155/2009/498505 Google Scholar
  13. Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8(8):2180–2187CrossRefGoogle Scholar
  14. Elkabouss K, Kacimi M, Ziad M, Ammar S, Bozon-Veduraz F (2004) Cobalt-exchanged hydroxyapatite catalysts: magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations. J Catal 226:16–24CrossRefGoogle Scholar
  15. Elliott JC, Mackie PE, Young RA (1973) Monoclinic hydroxyapatite. Science 180:1055–1057CrossRefGoogle Scholar
  16. Guo G, Sun Y, Wang Z, Guo H (2005) Preparation of hydroxyapatite nanoparticles by reverse micro emulsion. Ceram Int 31:869–872CrossRefGoogle Scholar
  17. Han Y, Wang X, Li S (2009) A simple route to prepare stable hydroxyapatite nanoparticles suspension. J Nanopart Res 11:1235–1240CrossRefGoogle Scholar
  18. Hench LL (1998) Bioceramics. J Am Ceram Soc 81(7):1705–1728CrossRefGoogle Scholar
  19. Hollander FFA, Plomp M, Streek CJ, Enckevort WJP (2001) A two-dimensional Hartman-Perdok analysis of polymorphic fat surface observed with atomic force microscopy. Surf Sci 471:101–113CrossRefGoogle Scholar
  20. Ingram AE, Robinson J, Rohrich RJ (1996) The antibacterial effect of porous hydroxyapatite granules. Plast Reconstr Surg 98(6):1119–1120Google Scholar
  21. Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052CrossRefGoogle Scholar
  22. Kim EJ, Choi S, Hong S (2007) Synthesis and photoluminescence properties of Eu3+ doped calcium phosphates. J Am Ceram Soc 90(9):2795–2798CrossRefGoogle Scholar
  23. LeGeros RZ, Taheri MM, Quirologico GB, LeGeros JP (1981) Formation and stability of apatites: effect of some cationic substitution. In: Proceeding of the 2nd International Congress on Phosphorous Compounds. IMPHOS, Rabat, pp 89–103Google Scholar
  24. Li Y, Ho J, Ooi CP (2010) Antimicrobial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles. Mater Sci Eng C 30(8):1134–1137Google Scholar
  25. Lilley KJ, Gbureck U, Knowles JC, Farrar DF, Barralet JE (2005) Cement from magnesium substituted hydroxyapatite. J Mat Sci Mat Med 16(5):455–460CrossRefGoogle Scholar
  26. Lorenzo LMR, Regi MV (2000) Controlled crystallization of calcium phosphate apatites. Chem Mater 12:2460–2465CrossRefGoogle Scholar
  27. Maity JP, Lin T, Cheng HP, Chen C, Reddy AS, Atla SB, Chang Y, Chen H, Chen C (2011) Synthesis of brushite particles in reverse microemulsion of the biosurfactant surfactin. Int J Mol Sci 12:3821–3830CrossRefGoogle Scholar
  28. Masala O, O’Brien O, Rafeletos G (2003) Formation of spherical granules of calcium pyrophosphate. Cryst Growth Des 3(3):431–434CrossRefGoogle Scholar
  29. Mene RU, Mahabole MP, Khairnar RS (2012) Surface modification of cobalt doped hydroxyapatite thick films via swift heavy ion irradiations for CO and CO2 gas sensing application. The 14th International Meeting on Chemical Sensors (ICMS) 2012Google Scholar
  30. Monmaturapoj M (2008) Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route. J Metals Mater Min 18(1):15–20Google Scholar
  31. Mote VD, Purushotham Y, Dole BN (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:1–8CrossRefGoogle Scholar
  32. Nakahira A, Nakamura S, Horimoto M (2007) Synthesis of modified hydroxyapatite (HAP) substituted with Fe ion for DDS application. IEEE Trans Magn 43(6):2465–2467CrossRefGoogle Scholar
  33. Nakamura S, Isobe T, Senna M (2001) Hydroxyapatite nano sol prepared via a mechanochemical route. J Nanopart Res 3:57–61CrossRefGoogle Scholar
  34. Neumeier M, Hails LA, Davis SA, Mann S, Epple M (2011) Synthesis of fluorescent core-shell hydroxyapatite nanoparticles. J Mater Chem 21:1250–1254CrossRefGoogle Scholar
  35. Opre Z, Mallat T, Baiker A (2007) Epoxidation of styrene with cobalt-hydroxyapatite and oxygen in dimethylformamide: a green technology? J Catal 245:482–486CrossRefGoogle Scholar
  36. Parekh BB, Joshi MJ, Vaidya ADB (2008) Characterization and inhibitive study of gel-grown hydroxyapatite crystal at physiological temperature. J Cryst Growth 310:1749–1753CrossRefGoogle Scholar
  37. Predoi D, Barsan M, Andronescu E, Vatasescu-Balcan RA, Costache M (2007) Hydroxyapatite-iron oxide bio-ceramics prepared using nano-size powder. J Optoelectron Adv Mater 9(11):3609–3613Google Scholar
  38. Ramakanth K (2007) Basics of X-ray diffraction and its application. I. K. International publishing House Pvt. Ltd, New DelhiGoogle Scholar
  39. Ren F, Xin R, Ge X, Leng Y (2009) Characterization and structural analysis of zinc-substituted hydroxyapatite. Acta Biomater 5(8):3141–3149CrossRefGoogle Scholar
  40. Singh RK, Narayan A, Prashad K, Yadav RS, Pandey AC, Singh AK, Verma L, Verma RK (2012) Thermal, structural, magnetic and photoluminescence studies on cobalt ferrite nanoparticles obtained by citrate precursor method. J Therm Anal Calorim 110:573–580CrossRefGoogle Scholar
  41. Sopyan I, Singh R, Hamdi M (2008) Synthesis of nano sized hydroxyapatite powder using sol–gel technique and its conversion to dense and porous bodies. Ind J Chem 47A:1626–1631Google Scholar
  42. Stanic V, Dimitrijevic S, Antic-Stankovic J, Mitric M, Jokic B, Plecas IB, Raicevic S (2010) Synthesis, characterization and antimicrobial activity of PVA/hydroxyapatite nanocomposites. Appl Surf Sci 256:6083–6089CrossRefGoogle Scholar
  43. Stojanovic Z, Veselinovic L, Markovic S, Ignjatovic N, Uskokovic D (2009) Hydrothermal synthesis of nanosized pure and cobalt-exchanged hydroxyapatite. Mater Manufac Proc 24:1096–1103CrossRefGoogle Scholar
  44. Tank KP, Sharma P, Kanchan DK, Joshi MJ (2011) FTIR, powder XRD, TEM and dielectric studies of pure and zinc doped nano-hydroxyapatite. Cryst Res Technol 46(12):1309–1316CrossRefGoogle Scholar
  45. Tao S, Irvin JTS (2001) Preparation and characterization of apatite-type lanthanum silicates by a sol–gel process. Mater Res Bull 36:1245–1258CrossRefGoogle Scholar
  46. Tin-Oo MM, Gopalakrishnan V, Samsuddin AR, Al Salihi KA, Shamsuria O (2007) Antibacterial property of locally produced hydroxyapatite. Arch Orofac Sci 2:41–44Google Scholar
  47. Udayakumar S, Renuka V, Kavitha K (2012) Structural, optical and thermal studies of cobalt doped hexagonal ZnO by simple chemical precipitation method. J Chem Pharma Res 4(2):1271–1280Google Scholar
  48. Vasant SR, Joshi MJ (2011) Synthesis and characterization of pure and zinc doped calcium pyrophosphate dihydrate nanoparticles. Eur Phys J Appl Phys 53:10601 (p1–p6)CrossRefGoogle Scholar
  49. Vegard L (1921) Die konstitution der mischkristalle und die raumfüllung der atome. Z Angew Phys 5:17–26Google Scholar
  50. Venkatasubbu GD, Ramasamy S, Avadhani GS, Palanikumar L, Kumar J (2012) Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells. J Nanopart Res 14:819–837CrossRefGoogle Scholar
  51. Veselinovic L, Karnovic L, Stojanovic Z, Bracko I, Markovic S, Ignjatovic N, Uskokovic D (2010) Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing. J Appl Cryst 43:320–327CrossRefGoogle Scholar
  52. Wen F, Zhao X, Ding H, Huo H, Chen J (2002) Hydrothermal synthesis and photoluminescent properties of Sb3+-doped and (Sb3+, Mn2+) co-doped calcium hydroxyapatite. J Mater Chem 12:3761–3765CrossRefGoogle Scholar
  53. White TJ, Zhili D (2003) Structural derivation and crystal chemistry of apatites. Acta Cryst B59:1–16Google Scholar
  54. Wu H, Wang T, Sun J, Wang W, Lin F (2007) A novel biomagnetic nanoparticles based on hydroxyapatite. Nanotechnology 18:1–9Google Scholar
  55. Wulff G (1901) Mineral on the question of speed of growth and dissolution of crystal surfaces. Z Kristallogr 34:449–530Google Scholar
  56. Xia Y, Xiong Y, Lim B, Skrabalk SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103CrossRefGoogle Scholar
  57. Yingguang L, Zhuoru Y, Jiang C (2007) Preparation, characterization and antimicrobial property of cerium substituted hydroxyapatite nanoparticle. J Rare Earths 25:452–456CrossRefGoogle Scholar
  58. Zhao DM, Wang XY, Chen ZY, Xu RW, Wu G, Yu DS (2008) Preparation and characterization of modified hydroxyapatite particles by heparin. Biomed Mater 3:025016 (6 pp)Google Scholar
  59. Zhou G, Li Y, Xiao W, Zhang L, Zuo Y, Xue J, Jansen JA (2008) Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J Biomed Mater Res Part A 85A:929–937CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Crystal Growth Laboratory, Physics DepartmentSaurashtra UniversityRajkotIndia
  2. 2.Bioscience DepartmentSaurashtra UniversityRajkotIndia

Personalised recommendations