Advertisement

Nanofibrous TiO2 improving performance of mesoporous TiO2 electrode in dye-sensitized solar cell

  • Markéta Zukalová
  • Ladislav Kavan
  • Jan Procházka
  • Arnošt Zukal
  • Jun-Ho Yum
  • Michael Graetzel
Research Paper
Part of the following topical collections:
  1. Nanostructured Materials 2012. Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos

Abstract

A method of direct coating of conducting glass by electrospinning was developed. Electrospun fibrous TiO2 consisting of closely packed anatase nanocrystals of 40–50 nm in size was incorporated into mesoporous TiO2 thin film stabilized by phosphorus. The mesoporous framework formed by walls with 5–6 nm TiO2 nanocrystals surrounding 20 nm mesopores exhibits extreme porosity and consequently limited number of necking points. TiO2 with fibrous morphology was found to solidify mesoporous titania and to be beneficial for the performance of corresponding photoanode in dye-sensitized solar cell (DSC). Obviously, its wire-like structure suitably interconnects mesoporous network and thus increases the electron collection efficiency from the TiO2 layer to the F-doped SnO2 electrode. The solar conversion efficiency of a DSC employing optimized photoanode consisting of nanocrystalline fibrous bottom layer, four mesoporous layers, and one nanocrystalline anatase scattering top layer sensitized with the N945 dye reached 5.35 %. This represents an improvement of about 9 % compared to the solar conversion efficiency of a DSC employing purely mesoporous TiO2 layer prepared by means of phosphorus doping (5.05 %).

Keywords

Dye-sensitized solar cell Titanium dioxide Nanofibers Mesoporous structure 

Notes

Acknowledgments

This study was supported by Grant Agency of the Czech Republic (Contract No. P108/12/0814). The material support of Elmarco, Liberec, Czech Republic is gratefully acknowledged.

References

  1. Archana PS, Jose R, Jin TM, Vijila C, Yusoff MM, Ramakrishna S (2010) Structural and electrical properties of Nb-doped TiO2 nanowires by electrospinning. J Am Ceram Soc 93:4096–4102CrossRefGoogle Scholar
  2. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72CrossRefGoogle Scholar
  3. Chen YL, Chang YH, Chen I, Kuo C (2012) Light scattering and enhanced photoactivity of electrospun titania. J Phys Chem C 116:3857–3865CrossRefGoogle Scholar
  4. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001) The effect of processing variables on the morphology of electrospun nanofibers. Polymer 42:261–272CrossRefGoogle Scholar
  5. Fan J, Liu S, Yu J (2012) Enhanced photovoltaic performance of DSC based on graphene composite. J Mater Chem 22:17027–17036CrossRefGoogle Scholar
  6. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75CrossRefGoogle Scholar
  7. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  8. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRefGoogle Scholar
  9. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRefGoogle Scholar
  10. Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of DSC. Nat Photonics 6:161–169CrossRefGoogle Scholar
  11. Hwang D, Jo SM, Kim DY, Armel V, MacFarlane DR, Jang SY (2011) High efficiency solid state DSC. ACS Appl Mat Interfaces 3:1521–1527CrossRefGoogle Scholar
  12. Jirsak O, Sanetrnik O, Lukas D, Kotek V, Martinova L, Chaloupek J (2005) A method of nanofibres production from a polymer solution using electrostatic spinning and device for carrying out the methodGoogle Scholar
  13. Jung WH, Kwak NS, Hwang TS, Yi KB (2012) Preparation of highly porous TiO2 nanofibers for DSSC. Appl Surf Sci 261:343–352CrossRefGoogle Scholar
  14. Kalyanasundaram K (2010) Dye sensitized solar cells. CRC Press, Boca RatonGoogle Scholar
  15. Kavan L (2010) Titania in diverse forms as substrates. In: Kalyanasundaram K (ed) Dye-sensitized solar cells. CRC Press, Boca RatonGoogle Scholar
  16. Kavan L (2012) Electrochemistry of titanium dioxide: some aspects and highlights. Chem Rec 12:131–142CrossRefGoogle Scholar
  17. Kokubo H, Ding B, Naka T, Tsuchihira H, Shiratori S (2007) Multi-core cable-like TiO2. Nanotechnology 18:165604CrossRefGoogle Scholar
  18. Krysova H, Zukal A, Trckova-Barankova J, Chandiran AK, Nazeeruddin MK, Grätzel M, Kavan L (2013) The application of electrospun titania nanofibers in dye sensitized solar cells. Chimia 67:149–154CrossRefGoogle Scholar
  19. Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Structural and optical properties of electrospun TiO2 nanofibres. Chem Mater 19:6536–6542CrossRefGoogle Scholar
  20. Laskova B, Zukalova M, Kavan L, Chou A, Liska P, Wei Z, Bin L, Kubat P, Ghadiri E, Moser JE, Grätzel M (2012) Voltage enhancement in dye-sensitized solar cell using (001)-oriented anatase TiO2 nanosheets. J Solid State Electrochem 16:2993–3001CrossRefGoogle Scholar
  21. Law M, Greene LE, Johnson JC, Saykaly R, Yang P (2005) Nanowire dye-sensitized solar cells. Nature Mat 4:455–459CrossRefGoogle Scholar
  22. Lee BH, Song MY, Jo SM, Kwak SY, Kim DY (2009) Charge transport characteristics of high efficiency DSC. J Phys Chem C 113:21453–21457CrossRefGoogle Scholar
  23. Li D, Xia Y (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3:555–560CrossRefGoogle Scholar
  24. Nair AS, Peining Z, Babu J, Shengyuan Y, Ramakrishna S (2011) Anisotropic TiO2 nanomaterials in DSC. Phys Chem Chem Phys 13:21248–21261CrossRefGoogle Scholar
  25. Onozuka K, Ding B, Tsuge Y, Naka T, Yamazaki M, Sugi S, Yoshikawa M, Shiratori S (2006) Electrospinning processed nanofibrous TiO2. Nanotechnology 17:1026–1031CrossRefGoogle Scholar
  26. Prochazka J, Kavan L, Shklover V, Zukalova M, Frank O, Kalbac M, Zukal A, Pelouchova H, Janda P, Mocek K, Klementova M, Carbonne D (2008) Multilayer films from templated TiO2 and structural changes during their thermal treatment. Chem Mater 20:2985–2993CrossRefGoogle Scholar
  27. Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2005a) New application of electrospun TiO2. Synth Met 153:77–80CrossRefGoogle Scholar
  28. Song MY, Kim DK, Jo SM, Kim DY (2005b) Enhancement of photocurrent generation. Synth Met 155:635–638CrossRefGoogle Scholar
  29. Yu J, Fan J, Lv K (2010) Anatase TiO2 nanosheets with exposed (001) facets. Nanoscale 2:2144–2149CrossRefGoogle Scholar
  30. Yu J, Li Q, Fan J, Cheng B (2011a) Fabrication and photovoltaic performance of hierarchically titanate. Chem Commun 47:9161–9163CrossRefGoogle Scholar
  31. Yu J, Li Q, Shu Z (2011b) DSC based on double-layered TiO2. Electrochim Acta 56:6293–6298CrossRefGoogle Scholar
  32. Yuan S, Li Y, Zhang Q, Wang H (2012) Anatase TiO2 sol as a low reactive precursor. Electrochim Acta 79:182–188CrossRefGoogle Scholar
  33. Zhan S, Chen D, Jiao X, Tao C (2006) Long TiO2 hollow fibers. J Phys Chem B 110:11199–11204CrossRefGoogle Scholar
  34. Zhao L, Yu J, Fan J, Zhai P, Wang S (2009) DSC based on ordered titanate nanotube. Electrochem Commun 11:2052–2055CrossRefGoogle Scholar
  35. Zukalova M, Zukal A, Kavan L, Nazeeruddin MK, Liska P, Grätzel M (2005) Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett 5:1789–1792CrossRefGoogle Scholar
  36. Zukalova M, Prochazka J, Zukal A, Yum J-H, Kavan L (2008) Structural parameters controlling the performance of organized mesoporous TiO2 films in dye sensitized solar cells. Inorg Chim Acta 361:656–662CrossRefGoogle Scholar
  37. Zukalova M, Prochazka J, Bastl Z, Duchoslav J, Rubacek L, Havlicek D, Kavan L (2010a) Facile conversion of electrospun TiO2 into titanium nitride/oxynitride Fibers. Chem Mater 22:4045–4055CrossRefGoogle Scholar
  38. Zukalova M, Prochazka J, Zukal A, Yum J-H, Kavan L, Grätzel M (2010b) Organized mesoporous TiO2 films stabilized by phosphorus: application for dye-sensitized solar cells. J Electrochem Soc 157:H99–H103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Markéta Zukalová
    • 1
  • Ladislav Kavan
    • 1
  • Jan Procházka
    • 1
  • Arnošt Zukal
    • 1
  • Jun-Ho Yum
    • 2
  • Michael Graetzel
    • 2
  1. 1.J. Heyrovský Institute of Physical Chemistry, v.v.iAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Laboratory of Photonics and InterfacesInstitute of Chemical Sciences and Engineering, Swiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations