Advertisement

Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: self-assemblies and dynamic light scattering

  • Christophe TraveletEmail author
  • Mylène Stemmelen
  • Vincent Lapinte
  • Frédéric Dubreuil
  • Jean-Jacques Robin
  • Redouane BorsaliEmail author
Research Paper

Abstract

The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters (D h) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C19 to 19.2 nm for C57). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D h-values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445–1458, 2013)].

Graphical Abstract

Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: Self-assemblies and dynamic light scattering Christophe Travelet, Mylène Stemmelen, Vincent Lapinte, Frédéric Dubreuil, Jean-Jacques Robin, Redouane Borsali

Keywords

Amphiphilic copolymer Polyoxazoline Grape seed vegetable oil Self-assembly Nanoparticle Nano-object Dynamic light scattering 

Notes

Acknowledgments

This research project was supported by the French centre national de la recherche scientifique (CNRS). The authors are grateful to Ms. Amandine Durand-Terrasson for TEM imaging at CERMAV and fruitful discussions.

References

  1. Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355CrossRefGoogle Scholar
  2. Adams N, Schubert US (2007) Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev 59:1504–1520CrossRefGoogle Scholar
  3. Ahrens H, Bækmark TR, Merkel R, Schmitt J, Graf K, Raiteri R, Helm CA (2000) Hydrophilic/hydrophobic nanostripes in lipopolymer monolayers. ChemPhysChem 1:101–106CrossRefGoogle Scholar
  4. Aissou K, Otsuka I, Rochas C, Fort S, Halila S, Borsali R (2011a) Nano-organization of amylose-b-polystyrene block copolymer films doped with bipyridine. Langmuir 27:4098–4103CrossRefGoogle Scholar
  5. Aissou K, Pfaff A, Giacomelli C, Travelet C, Müller AHE, Borsali R (2011b) Fluorescent vesicles consisting of galactose-based amphiphilic copolymers with a π-conjugated sequence self-assembled in water. Macromol Rapid Commun 32:912–916CrossRefGoogle Scholar
  6. Alexandridis P (1996) Amphiphilic copolymers and their applications. Curr Opin Colloid Interface Sci 1:490–501CrossRefGoogle Scholar
  7. Arndt K-F, Müller G (1996) Polymercharakterisierung. Hanser, Munich (Germany) (in German)Google Scholar
  8. Bækmark TR, Wiesenthal T, Kuhn P, Bayerl TM, Nuyken O, Merkel R (1997) New insights into the phase behavior of lipopolymer monolayers at the air/water interface. IRRAS study of a polyoxazoline lipopolymer. Langmuir 13:5521–5523CrossRefGoogle Scholar
  9. Bækmark TR, Wiesenthal T, Kuhn P, Albersdörfer A, Nuyken O, Merkel R (1999) A systematic infrared reflection–absorption spectroscopy and film balance study of the phase behavior of lipopolymer monolayers at the air–water interface. Langmuir 15:3616–3626CrossRefGoogle Scholar
  10. Ball P (1994) Designing the molecular world: chemistry at the frontier. Princeton University Press, Princeton (USA)Google Scholar
  11. Barcikowski S, Menéndez-Manjón A, Chichkov B, Brikas M, Račiukaitis G (2007) Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl Phys Lett 91:083113-1–083113-3CrossRefGoogle Scholar
  12. Beaudoin E, Borisov O, Lapp A, Billon L, Hiorns RC, François J (2002) Neutron scattering of hydrophobically modified poly(ethylene oxide) in aqueous solutions. Macromolecules 35:7436–7447CrossRefGoogle Scholar
  13. Beck M, Birnbrich P, Eicken U, Fischer H, Fristad WE, Hase B, Krause H-J (1994) Polyoxazoline auf fettchemischer basis. Angew Makromol Chem 223:217–233 (in German)CrossRefGoogle Scholar
  14. Berne BJ, Pecora R (1976) Dynamic light scattering with applications to chemistry, biology and physics. Wiley, New YorkGoogle Scholar
  15. Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30:267–277CrossRefGoogle Scholar
  16. Bodycomb J, Hara M (1995) Light scattering study of ionomers in solution. 5. Contin analysis of dynamic scattering data from sulfonated polystyrene ionomer in a polar solvent (dimethylformamide). Macromolecules 28:8190–8197CrossRefGoogle Scholar
  17. Burchard W, Frank M, Michel E (1996) Particularities in static and dynamic light scattering from branched polyelectrolytes in comparison to their linear analogues. Ber Bunsen Phys Chem 100:807–814CrossRefGoogle Scholar
  18. Cifra P, Bleha T (2007) Free energy of deformation of the radius of gyration in semiflexible chains. Macromol Theory Simul 16:501–512CrossRefGoogle Scholar
  19. Cushen JD, Otsuka I, Bates CM, Halila S, Fort S, Rochas C, Easley JA, Rausch EL, Thio A, Borsali R, Willson CG, Ellison CJ (2012) Oligosaccharide/silicon-containing block copolymers with 5 nm features for lithographic applications. ACS Nano 6:3424–3433CrossRefGoogle Scholar
  20. Dal Bó AG, Soldi V, Giacomelli FC, Travelet C, Jean B, Pignot-Paintrand I, Borsali R, Fort S (2012) Self-assembly of amphiphilic glycoconjugates into lectin-adhesive nanoparticles. Langmuir 28:1418–1426CrossRefGoogle Scholar
  21. Daniel J-C, Pichot C (2006) Les latex synthétiques: élaboration, propriétés, applications. Tec et Doc, London (in French)Google Scholar
  22. de Medeiros Modolon S, Otsuka I, Fort S, Minatti E, Borsali R, Halila S (2012) Sweet block copolymer nanoparticles: preparation and self-assembly of fully oligosaccharide-based amphiphile. Biomacromolecules 13:1129–1135CrossRefGoogle Scholar
  23. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973CrossRefGoogle Scholar
  24. Discher BM, Won Y-Y, Ege DS, Lee JC-M, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1146CrossRefGoogle Scholar
  25. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys (Berlin) 322:549–560. http://onlinelibrary.wiley.com/doi/10.1002/andp.19053220806/pdf (in German). Accessed 16 March 2013
  26. Einstein A (1906) Zur Theorie der Brownschen Bewegung. Ann Phys (Berlin) 324:371–381. http://www.physik.uni-augsburg.de/theo1/hanggi/History/Einstein1906BMII.pdf (in German). Accessed 16 March 2013
  27. Einzmann M, Binder WH (2001) Novel functional initiators for oxazoline polymerization. J Polym Sci 39:2821–2831Google Scholar
  28. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810CrossRefGoogle Scholar
  29. Förster S, Zisenis M, Wenz E, Antonietti M (1996) Micellization of strongly segregated block copolymers. J Chem Phys 104:9956–9970CrossRefGoogle Scholar
  30. Förtig A, Jordan R, Graf K, Schiavon G, Purrucker O, Tanaka M (2004) Solid-supported biomimetic membranes with tailored lipopolymer tethers. Macromol Symp 210:329–338CrossRefGoogle Scholar
  31. Frisken BJ (2001) Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl Optics 40:4087–4091CrossRefGoogle Scholar
  32. Giardi C, Lapinte V, Charnay C, Robin J-J (2009) Nonionic polyoxazoline surfactants based on renewable source: synthesis, surface and bulk properties. React Funct Polym 69:643–649CrossRefGoogle Scholar
  33. Gilbert RG, Hess M, Jenkins AD, Jones RG, Kratochvíl P, Stepto RFT (2009) Dispersity in polymer science. Pure Appl Chem 81:351–353CrossRefGoogle Scholar
  34. Gissot A, Camplo M, Grinstaff MW, Barthélémy P (2008) Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids. Org Biomol Chem 6:1324–1333CrossRefGoogle Scholar
  35. Hamley IW (2003) Nanotechnology with soft materials. Angew Chem Int Ed 42:1692–1712CrossRefGoogle Scholar
  36. Hoogenboom R (2011) Poly(2-oxazoline)s based on fatty acids. Eur J Lipid Sci Technol 113:59–71CrossRefGoogle Scholar
  37. Huang H, Hoogenboom R, Leenen MAM, Guillet P, Jonas AM, Schubert US, Gohy J-F (2006) Solvent-induced morphological transition in core-cross-linked block copolymer micelles. J Am Chem Soc 128:3784–3788CrossRefGoogle Scholar
  38. Ikkala O, ten Brinke G (2004) Hierarchical self-assembly in polymeric complexes: towards functional materials. Chem Commun 19:2131–2137CrossRefGoogle Scholar
  39. Johansson I, Kjellin M (2010) Surfactants from renewable resources. Wiley, Chichester (UK)Google Scholar
  40. Johansson I, Svensson M (2001) Surfactants based on fatty acids and other natural hydrophobes. Curr Opin Colloid Interface Sci 6:178–188CrossRefGoogle Scholar
  41. Jordan R, Martin K, Räder HJ, Unger KK (2001) Lipopolymers for surface functionalizations. 1. Synthesis and characterization of terminal functionalized poly(N-propionylethylenimine)s. Macromolecules 34:8858–8865CrossRefGoogle Scholar
  42. Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57:4814–4820CrossRefGoogle Scholar
  43. Kurata M, Fukatsu M (1964) Unperturbed dimension and translational friction constant of branched polymers. J Chem Phys 41:2934–2944CrossRefGoogle Scholar
  44. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269CrossRefGoogle Scholar
  45. Lim H, Kassim A, Huang N, Yarmo MA (2009) Palm-based nonionic surfactants as emulsifiers for high internal phase emulsions. J Surfactants Deterg 12:355–362CrossRefGoogle Scholar
  46. Lüdtke K, Jordan R, Hommes P, Nuyken O, Naumann CA (2005) Lipopolymers from new 2-substituted-2-oxazolines for artificial cell membrane constructs. Macromol Biosci 5:384–393CrossRefGoogle Scholar
  47. Lukyanov AN, Torchilin VP (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56:1273–1289CrossRefGoogle Scholar
  48. Luxenhofer R, Sahay G, Schulz A, Alakhova D, Bronich TK, Jordan R, Kabanov AV (2011) Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J Controlled Release 153:73–82CrossRefGoogle Scholar
  49. Mauricio MR, Otsuka I, Borsali R, Petzhold CL, Cellet TSP, de Carvalho GM, Rubira AF (2011) Synthesis of star poly(N-isopropylacrylamide) by β-cyclodextrin core initiator via ATRP approach in water. React Funct Polym 71:1160–1165CrossRefGoogle Scholar
  50. Mazzarino L, Travelet C, Ortega-Murillo S, Otsuka I, Pignot-Paintrand I, Lemos-Senna E, Borsali R (2012) Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J Colloid Interface Sci 370:58–66CrossRefGoogle Scholar
  51. Nanosight operating manual. http://www.me.umn.edu/centers/cdr/reports/NanoSightManual.pdf. Accessed 16 March 2013
  52. Naumann CA, Brooks CF, Fuller GG, Lehmann T, Rühe J, Knoll W, Kuhn P, Nuyken O, Frank CW (2001) Two-dimensional physical networks of lipopolymers at the air/water interface: correlation of molecular structure and surface rheological behavior. Langmuir 17:2801–2806CrossRefGoogle Scholar
  53. Norisuye T (1993) Semiflexible polymers in dilute solution. Prog Polym Sci 18:543–584CrossRefGoogle Scholar
  54. Otsuka I, Fuchise K, Halila S, Fort S, Aissou K, Pignot-Paintrand I, Chen Y, Narumi A, Kakuchi T, Borsali R (2010a) Thermoresponsive vesicular morphologies obtained by self-assemblies of hybrid oligosaccharide-block-poly(N-isopropylacrylamide) copolymer systems. Langmuir 26:2325–2332CrossRefGoogle Scholar
  55. Otsuka I, Aissou K, Ortega-Murillo S, Travelet C, Halila S, Fort S, Rochas C, Borsali R (2010b) Hybrid glycopolymers self-assemblies. Abstr Pap Am Chem S 240:148-POLYGoogle Scholar
  56. Otsuka I, Travelet C, Halila S, Fort S, Pignot-Paintrand I, Narumi A, Borsali R (2012) Thermoresponsive self-assemblies of cyclic and branched oligosaccharide-block-poly(N-isopropylacrylamide) diblock copolymers into nanoparticles. Biomacromolecules 13:1458–1465CrossRefGoogle Scholar
  57. Podzimek S (2011) Light scattering, size exclusion chromatography and asymmetric flow field flow fractionation: powerful tools for the characterization of polymers, proteins and nanoparticles. Wiley, HobokenCrossRefGoogle Scholar
  58. Provencher SW (1979) Inverse problems in polymer characterization: direct analysis of polydispersity with photon correlation spectroscopy. Macromol Chem Phys 180:201–209CrossRefGoogle Scholar
  59. Purrucker O, Förtig A, Jordan R, Tanaka M (2004) Supported membranes with well-defined polymer tethers-incorporation of cell receptors. ChemPhysChem 5:327–335CrossRefGoogle Scholar
  60. Qiu LY, Bae YH (2006) Polymer architecture and drug delivery. Pharm Res 23:1–30CrossRefGoogle Scholar
  61. Rettler EF-J, Lambermont-Thijs HML, Kranenburg JM, Hoogenboom R, Unger MV, Siesler HW, Schubert US (2011) Water uptake of poly(2-N-alkyl-2-oxazoline)s: influence of crystallinity and hydrogen-bonding on the mechanical properties. J Mater Chem 21:17331–17337CrossRefGoogle Scholar
  62. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170CrossRefGoogle Scholar
  63. Rinaudo M (1988) The centre de recherches sur les macromolécules végétales (CERMAV). Carbohydr Polym 9:159–168CrossRefGoogle Scholar
  64. Rinaudo M, Pérez S (2007) Cermav at 40! Cellulose 14:85–87CrossRefGoogle Scholar
  65. Rodríguez-Hernández J, Chécot F, Gnanou Y, Lecommandoux S (2005) Toward “smart” nano-objects by self-assembly of block copolymers in solution. Prog Polym Sci 30:691–724CrossRefGoogle Scholar
  66. Schatz C, Louguet S, Le Meins J-F, Lecommandoux S (2009) Polysaccharide-block-polypeptide copolymer vesicles: towards synthetic viral capsids. Angew Chem Int Ed 48:2572–2575CrossRefGoogle Scholar
  67. Stemmelen M, Travelet C, Lapinte V, Borsali R, Robin J–J (2013) Synthesis and self-assembly of amphiphilic polymers based on polyoxazoline and vegetable oil derivatives. Polym Chem 4:1445–1458CrossRefGoogle Scholar
  68. Théato P, Zentel R, Schwarz S (2002) Synthesis of end-functionalized lipopolymers and their characterization with regard to polymer-supported lipid membranes. Macromol Biosci 2:387–394CrossRefGoogle Scholar
  69. Thijs HML, Becer CR, Guerrero-Sanchez C, Fournier D, Hoogenboom R, Schubert US (2007) Water uptake of hydrophilic polymers determined by a thermal gravimetric analyzer with a controlled humidity chamber. J Mater Chem 17:4864–4871CrossRefGoogle Scholar
  70. Trushkevych O, Collings N, Hasan T, Scardaci V, Ferrari AC, Wilkinson TD, Crossland WA, Milne WI, Geng J, Johnson BFG, Macaulay S (2008) Characterization of carbon nanotube-thermotropic nematic liquid crystal composites. J Phys D 41:125106-1–125106-11CrossRefGoogle Scholar
  71. Vemula PK, John G (2008) Crops: a green approach toward self-assembled soft materials. Acc Chem Res 41:769–782CrossRefGoogle Scholar
  72. Volet G, Chanthavong V, Wintgens V, Amiel C (2005) Synthesis of monoalkyl end-capped poly(2-methyl-2-oxazoline) and its micelle formation in aqueous solution. Macromolecules 38:5190–5197CrossRefGoogle Scholar
  73. Volet G, Auvray L, Amiel C (2009) Monoalkyl poly(2-methyl-2-oxazoline) micelles. A small-angle neutron scattering study. J Phys Chem B 113:13536–13544CrossRefGoogle Scholar
  74. Volet G, Lasne Deschamps A-C, Amiel C (2010) Association of hydrophobically α, ω-end-capped poly(2-methyl-2-oxazoline) in water. J Polym Sci 48:2477–2485Google Scholar
  75. von Rybinski W, Hill K (1998) Alkyl polyglycosides—properties and applications of a new class of surfactants. Angew Chem Int Ed 37:1328–1345CrossRefGoogle Scholar
  76. Woodle MC, Engbers CM, Zalipsky S (1994) New amphipatic polymer lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjugate Chem 5:493–496CrossRefGoogle Scholar
  77. Wurlitzer A, Politsch E, Huebner S, Krüger P, Weygand M, Kjaer K, Hommes P, Nuyken O, Cevc G, Lösche M (2001) Conformation of polymer brushes at aqueous surfaces determined with X-ray and neutron reflectometry. 2. High-density phase transition of lipopolyoxazolines. Macromolecules 34:1334–1342CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Christophe Travelet
    • 1
    Email author
  • Mylène Stemmelen
    • 2
  • Vincent Lapinte
    • 2
  • Frédéric Dubreuil
    • 1
  • Jean-Jacques Robin
    • 2
  • Redouane Borsali
    • 1
    Email author
  1. 1.Centre de Recherches sur les Macromolécules Végétales (CERMAV-UPR 5301 CNRS) Université Joseph Fourier (UJF), Institut de Chimie Moléculaire de Grenoble (ICMG-FR 2607 CNRS), PolyNat Carnot institute, Arcane LabEx, domaine universitaire de GrenobleGrenoble cedex 9France
  2. 2.Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-UM1-ENSCM), équipe ingénierie et architectures macromoléculairesUniversité de Montpellier IIMontpellier cedex 5France

Personalised recommendations