In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models

  • M. Pojo
  • S. R. Cerqueira
  • T. Mota
  • A. Xavier-Magalhães
  • S. Ribeiro-Samy
  • J. F. Mano
  • J. M. Oliveira
  • R. L. Reis
  • N. Sousa
  • B. M. Costa
  • A. J. Salgado
Research Paper

Abstract

Glioblastoma (GBM) is simultaneously the most common and most malignant subtype tumor of the central nervous system. These are particularly dramatic diseases ranking first among all human tumor types for tumor-related average years of life lost and for which curative therapies are not available. Recently, the use of nanoparticles as drug delivery systems (DDS) for tumor treatment has gained particular interest. In an attempt to evaluate the potential of carboxymethylchitosan/poly(amidoamine) (CMCht/PAMAM) dendrimer nanoparticles as a DDS, we aimed to evaluate its cytotoxicity and internalization efficiency in GBM cell models. CMCht/PAMAM-mediated cytotoxicity was evaluated in a GBM cell line (U87MG) and in human immortalized astrocytes (hTERT/E6/E7) by MTS and double-stranded DNA quantification. CMCht/PAMAM internalization was assessed by double fluorescence staining. Both cells lines present similar internalization kinetics when exposed to a high dose (400 μg/mL) of these nanoparticles. However, the internalization rate was higher in tumor GBM cells as compared to immortalized astrocytes when cells were exposed to lower doses (200 μg/mL) of CMCht/PAMAM for short periods (<24 h). After 48 h of exposure, both cell lines present ~100 % of internalization efficiency for the tested concentrations. Importantly, short-term exposures (1, 6, 12, 24, and 48 h) did not show cytotoxicity, and long-term exposures (7 days) to CMCht/PAMAM induced only low levels of cytotoxicity in both cell lines (~20 % of decrease in metabolic activity). The high efficiency and rate of internalization of CMCht/PAMAM we show here suggest that these nanoparticles may be an attractive DDS for brain tumor treatment in the future.

Keywords

Glioblastoma Drug delivery systems Nanoparticles Dendrimers Intracellular 

Notes

Acknowledgments

The authors would like to acknowledge the Portuguese Foundation for Science and Technology (Grant PTDC/SAU-BMA/114059/2009 and Science 2007 Program to António J. Salgado; Grant PTDC/CTM-BPC/115977/2009 and Post-Doctoral fellowship SFRH/BPD/63175/2009 to Joaquim M. Oliveira; Grant PTDC/SAU-GMG/113795/2009 and Post-doctoral fellowship SFRH/BPD/33612/2009 to Bruno M. Costa; Pre-Doctoral fellowship SFRH/BD/48406/2008 to Susana R. Cerqueira; and Pre-Doctoral fellowship SFRH/BD/81042/2011 to Marta Pojo), the Calouste Gulbenkian Foundation (Bruno M. Costa), and Liga Portuguesa Contra o Cancro (Bruno M. Costa).

Supplementary material

11051_2013_1621_MOESM1_ESM.tiff (1.3 mb)
Supplementary Figure 1 Transmission Electron Microscopy micrograph ofCMCht/PAMAM dendrimer nanoparticles (TIFF 1283 kb)

References

  1. Agemy L, Friedmann-Morvinski D, Kotamraju VR et al (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci USA 108(42):17450–17455CrossRefGoogle Scholar
  2. Avgeropoulos NG, Batchelor TT (1999) New treatment strategies for malignant gliomas. Oncologist 4(3):209–224Google Scholar
  3. Cerqueira SR, Silva BL, Oliveira JM et al (2012) Multifunctionalized CMCht/PAMAM dendrimer nanoparticles modulate the cellular uptake by astrocytes and oligodendrocytes in primary cultures of glial cells. Macromol Biosci 12(5):591–597CrossRefGoogle Scholar
  4. Chen XG, Park HJ (2003) Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohyd Polym 53:355–359Google Scholar
  5. Costa BM, Smith JS, Chen Y et al (2010) Reversing HOXA9 oncogene activation by PI3K inhibition: epigenetic mechanism and prognostic significance in human glioblastoma. Cancer Res 70(2):453–462Google Scholar
  6. Daum N, Tscheka C, Neumeyer A et al (2012) Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(1):52–65CrossRefGoogle Scholar
  7. Dilnawaz F, Singh A, Mewar S et al (2012) The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials 33(10):2936–2951CrossRefGoogle Scholar
  8. Du J, Sun Y, Shi QS et al (2012) Biodegradable nanoparticles of mPEG–PLGA–PLL triblock copolymers as novel non-viral vectors for improving siRNA delivery and gene silencing. Int J Mol Sci 13(1):516–533CrossRefGoogle Scholar
  9. Farrell D, Ptak K, Panaro NJ et al (2011) Nanotechnology-based cancer therapeutics—promise and challenge—lessons learned through the NCI alliance for nanotechnology in cancer. Pharm Res 28(2):273–278CrossRefGoogle Scholar
  10. Grodzik M, Sawosz E, Wierzbicki M et al (2011) Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo. Int J Nanomed 6:3041–3048Google Scholar
  11. Huse JT, Phillips HS, Brennan CW (2011) Molecular subclassification of diffuse gliomas: seeing order in the chaos. Glia 59(8):1190–1199CrossRefGoogle Scholar
  12. Koukourakis GV, Kouloulias V, Zacharias G et al (2009) Temozolomide with radiation therapy in high grade brain gliomas: pharmaceuticals considerations and efficacy: a review article. Molecules 14(4):1561–1577CrossRefGoogle Scholar
  13. Maher EA, Furnari FB, RM B (2001) Malignant gliomas: genetics and biology of a grave matter. Genes Dev 15:1311–1333CrossRefGoogle Scholar
  14. Mrugala MM, Chamberlain MC (2008) Mechanisms of disease: temozolomide and glioblastoma—look to the future. Nat Clin Pract Oncol 5(8):476–486CrossRefGoogle Scholar
  15. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109(1):93–108CrossRefGoogle Scholar
  16. Oliveira JM, Kotobuki N, Marques AP et al (2008) Surface engineered carboxymethilchitosan/poly(amidoamine) dendrimer nanoparticles for intracellular trageting. Adv Funct Mater 18:1–14Google Scholar
  17. Oliveira JM, Sousa RA, Kotobuki N et al (2009) The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials 30(5):804–813CrossRefGoogle Scholar
  18. Oliveira JM, Kotobuki N, Tadokoro M et al (2010) Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Bone 46(5):1424–1435CrossRefGoogle Scholar
  19. Pereira VH, Salgado AJ, Oliveira JM et al (2011) In vivo biodistribution of carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in rats. J Bioact Compat Polym 26(6):619–627CrossRefGoogle Scholar
  20. Pojo M, Costa B M (2011) Molecular hallmarks of gliomas. In: Garami M (ed) Molecular targets of CNS tumors. In Tech, p 177–200Google Scholar
  21. Raoof M, Mackeyev Y, Cheney MA et al (2012) Internalization of C60 fullerenes into cancer cells with accumulation in the nucleus via the nuclear pore complex. Biomaterials 33(10):2952–2960CrossRefGoogle Scholar
  22. Rich JN, Bigner DD (2004) Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 3(5):430–446CrossRefGoogle Scholar
  23. Riemenschneider MJ, Reifenberger G (2009) Molecular neuropathology of gliomas. Int J Mol Sci 10(1):184–212CrossRefGoogle Scholar
  24. Salgado AJ, Oliveira JM, Pirraco RP et al (2010) Carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in central nervous systems-regenerative medicine: effects on neuron/glial cell viability and internalization efficiency. Macromol Biosci 10(10):1130–1140CrossRefGoogle Scholar
  25. Seigneuric R, Markey L, Nuyten DSA et al (2012) From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med 10:640–652CrossRefGoogle Scholar
  26. Wang Y, Guo R, Cao X et al (2011) Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials 32(12):3322–3329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Pojo
    • 1
    • 2
  • S. R. Cerqueira
    • 1
    • 2
    • 3
  • T. Mota
    • 1
    • 2
  • A. Xavier-Magalhães
    • 1
    • 2
  • S. Ribeiro-Samy
    • 1
    • 2
    • 3
  • J. F. Mano
    • 2
    • 3
  • J. M. Oliveira
    • 2
    • 3
  • R. L. Reis
    • 2
    • 3
  • N. Sousa
    • 1
    • 2
  • B. M. Costa
    • 1
    • 2
  • A. J. Salgado
    • 1
    • 2
  1. 1.Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of MinhoBragaPortugal
  2. 2.ICVS/3Bs, PT Government Associated LaboratoryBraga, GuimarãesPortugal
  3. 3.3B’s Research Group-Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineCaldas das Taipas, GuimarãesPortugal

Personalised recommendations