MZnFe2O4 (M = Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis

  • R. M. Freire
  • T. S. Ribeiro
  • I. F. Vasconcelos
  • J. C. Denardin
  • E. B. Barros
  • Giuseppe Mele
  • L. Carbone
  • S. E. Mazzetto
  • P. B. A. Fechine
Research Paper


MZnFe2O4 (M = Ni or Mn) cubic nanoparticles have been prepared by hydrothermal synthesis in mild conditions and short time without any procedure of calcinations. The structural and magnetic properties of the mixed ferrites were investigated by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Mössbauer spectroscopy, vibrating sample magnetometer, and Transmission electron microscopy (TEM). X-ray analysis showed peaks characteristics of the spinel phase. The average diameter of the nanoparticles observed by TEM measurements was approximately between 4 and 10 nm. Spectroscopy study of the spinel structure was performed based on Group Theory. The predicted bands were observed in FTIR and Raman spectrum. The magnetic parameters and Mössbauer spectroscopy were measured at room temperature and superparamagnetic behavior was observed for mixed ferrites. This kind of nanoparticles can be used as precursor in drug delivery systems, magnetic hyperthermia, ferrofluids, or magnetic imaging contrast agents.


Mixed ferrites Magnetic nanoparticles Hydrothermal synthesis Cubic morphology 



This study was supported by CAPES, Funcap, and CNPq (Brazilian agencies). The support from Fondecyt 1110252; Millennium Science Nucleus, Basic and Applied Magnetism Grant N°P10-061-F and CONICYT BASAL CEDENNA FB0807, are gratefully acknowledged. L. Carbone acknowledges financial support by the Italian Ministry of Education, University and Research through the project AEROCOMP (contract MIUR no. DM48391). L. Carbone performed TEM investigations c/o the Istituto Nanoscienze –CNR NNL UOS Lecce.


  1. Albornoz C, Jacobo SE (2006) Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J Magn Magn Mater 305(1):12–15CrossRefGoogle Scholar
  2. Amer MA, Meaz TM, Ata-Allah S, Aboul-Enein S, Abd-El-Hamid MO (2005) Mössbauer, infrared and X-ray Studies of Ni0.5Zn0.5CrxFe2-xO4 ferrites. Egypt J Solids 28:3Google Scholar
  3. Amer MA, Tawfik A, Mostafa AG, El-Shora AF, Zaki SM (2011) Spectral studies of Co substituted Ni–Zn ferrites. J Magn Magn Mater 323(11):1445–1452CrossRefGoogle Scholar
  4. Banerjee N, Krupanidhi SB (2012) Anomalous magnetic behavior of La0.6Sr0.4MnO3 nano-tubes constituted with 3–12 nm particles. Appl Phys A:1–8. doi:  10.1007/s00339-012-7272-0
  5. Barreto A, Santiago V, Mazzetto S, Denardin J, Lavín R, Mele G, Ribeiro M, Vieira I, Gonçalves T, Ricardo N, Fechine P (2011) Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy. J Nanopart Res 13(12):6545–6553CrossRefGoogle Scholar
  6. Bezerra MJOS (2007) Síntese e Caracterização da ferrita de MnZn obtida pelo método dos citratos precursores Universidade Federal do Rio Grande do Norte, NatalGoogle Scholar
  7. Bleicher L, Sasaki JM, Paiva Santos CO (2000) Development of a graphical interface for the Rietveld refinement program DBWS. J Appl Crystallogr 33(4):1189CrossRefGoogle Scholar
  8. Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Technol 191(1–3):235–237CrossRefGoogle Scholar
  9. Daniels JM, Rosencwaig A (1970) Mossbauer study of the Ni–Zn ferrite system. Can J Phys 48(4):381–396CrossRefGoogle Scholar
  10. Date SK, Joy PA, Kumar PSA, Sahoo B, Keune W (2004) Structural, magnetic and Mössbauer studies on nickel–zinc ferrites synthesized via a precipitation route. Phys Status Solidi (C) 1(12):3495–3498CrossRefGoogle Scholar
  11. Dawoud HA, Shaat SK (2006) A structural study of Cu–Zn ferrites by infrared spectra. Al-aqsa J 10:247–262Google Scholar
  12. Dickson DPE, Berry FJ (1986) Mössbauer spectroscopy. Cambridge University Press, USACrossRefGoogle Scholar
  13. Gibb TC (1994) Encyclopedia of Inorganic Chemistry. Jonh Wiley and Sons, ChidresterGoogle Scholar
  14. Goldman A (2006) Modem Ferrite Technology. Springer, PittsburghGoogle Scholar
  15. Gupta R, Sood AK, Metcalf P, Honig JM (2002) Raman study of stoichiometric and Zn-doped Fe3O4. Phys Rev B 65(10):104430CrossRefGoogle Scholar
  16. Hee Kim E, Sook Lee H, Kook Kwak B, Kim B-K (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330CrossRefGoogle Scholar
  17. Julien CM, Massot M (2003) Raman spectroscopic studies of lithium manganates with spinel structure. J Phys Condens Matter 15(19):3151CrossRefGoogle Scholar
  18. Knobel M, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, Denardin JC (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836–2857Google Scholar
  19. Krehula S, Musić S (2008) Influence of cobalt ions on the precipitation of goethite in highly alkaline media. Clay Miner 43:95–105CrossRefGoogle Scholar
  20. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) ChemInform abstract: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. ChemInform 39 (35):no–noGoogle Scholar
  21. Lee JH, Maeng DY, Kim YS, Won CW (1999) The characteristics of Ni–Zn ferrite powder prepared by the hydrothermal process. J Mater Sci Lett 18(13):1029–1031CrossRefGoogle Scholar
  22. Leung LK, Evans BJ, Morrish AH (1973) Low-temperature Mossbauer study of a Nickel–Zinc ferrite: ZnxNi1-xFe2O4. Phys Rev B 8(1):29–43CrossRefGoogle Scholar
  23. Maia DF, Dantas BB, Dias G, Freitas NL, Costa ACFM (2008) Influência dotipo de combustível na síntese por reação e combustão do catalisador ZnAl2O4. In: 18 CBECiMat—Congresso Brasileiro de Engenharia e Ciências dos Materiais, Porto de GalinhasGoogle Scholar
  24. Malik R, Annapoorni S, Lamba S, Raghavendra Reddy V, Gupta A, Sharma P, Inoue A (2010) Mossbauer and magnetic studies in nickel ferrite nanoparticles: effect of size distribution. J Magn Magn Mater 322(23):3742–3747CrossRefGoogle Scholar
  25. Oliveira LFC (2001) Espectroscopia molecular. Química Nova na Escola 4:24–30Google Scholar
  26. Pailhé N, Wattiaux A, Gaudon M, Demourgues A (2008) Correlation between structural features and vis-NIR spectra of α-Fe2O3 hematite and AFe2O4 spinel oxides (A = Mg, Zn). J Solid State Chem 181(5):1040–1047CrossRefGoogle Scholar
  27. Paiva ACLA, Silva VJ, Vieira DA, Gama L, Costa ACFM (2008) Síntese e caracterização de pós de ferrita Mn–Zn: efeito da substituição do Mn2+ pelo Fe2+ e da quantidade de H2O. Revista Eletrônica de Materiais e Processos 3(1):25–30Google Scholar
  28. Pathan AN, Kalyani S, Pangal AAG (2010) Synthesis and Mössbauer studies on Nickel–Zinc–Copper nanoferrites. Nanotechnol Nanosci 1(1):13–16Google Scholar
  29. Porto S (1981) Normal mode determination in crystals. J Raman Spectrosc 10:253–290CrossRefGoogle Scholar
  30. Potakova VA, Zverev ND, Romanov VP (1972) On the cation distribution in Nix-yFex2+ZnyFe2 3+O4 spinel ferrites. Phys Status Solidi (a) 12(2):623–627CrossRefGoogle Scholar
  31. Ravinder D (1999) Far-infrared spectral studies of mixed lithium–zinc ferrites. Mater Lett 40(5):205–208CrossRefGoogle Scholar
  32. Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst 22:151–152CrossRefGoogle Scholar
  33. Shebanova ON, Lazor P (2003) Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem 174(2):424–430CrossRefGoogle Scholar
  34. Siddique M, Butt NM (2010) Effect of particle size on degree of inversion in ferrites investigated by Mossbauer spectroscopy. Phys B 405(19):4211–4215CrossRefGoogle Scholar
  35. Singhal S, Barthwal SK, Chandra K (2006) Structural, magnetic and Mossbauer spectral studies of nanosize aluminum substituted nickel zinc ferrites. J Magn Magn Mater 296(2):94–103CrossRefGoogle Scholar
  36. Somiya S, Roy R (2000) Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 23:453–460CrossRefGoogle Scholar
  37. Suchanek WL, Riman RE (2006) Hydrothermal synthesis of advanced ceramic powders. Adv Sci Technol 45:184–193CrossRefGoogle Scholar
  38. Sundaresan A, Rao CNR (2009) Implications and consequences of ferromagnetism universally exhibited by inorganic nanoparticles. Solid State Commun 149(29–30):1197–1200CrossRefGoogle Scholar
  39. Thomas M, George KC (2009) Infrared and magnetic study of nanophase zinc ferrite. Indian J Pure Ap Phys 47:81–86Google Scholar
  40. Upadhyay C, Mishra D, Verma HC, Anand S, Das RP (2003) Effect of preparation conditions on formation of nanophase Ni–Zn ferrites through hydrothermal technique. J Magn Magn Mater 260 (1â€″2):188–194Google Scholar
  41. Vucinic-Vasic M, Antic B, Kremenovic A, Nikolic AS, Stoiljkovic M, Bibic N, Spasojevic V, Colomban P (2006) Zn,Ni ferrite/NiO nanocomposite powder obtained from acetylacetonato complexesGoogle Scholar
  42. Wang L, Li FS (2001) Mossbauer study of nanocrystalline Ni–Zn ferrite. J Magn Magn Mater 223(3):233–237CrossRefGoogle Scholar
  43. Young RA, Sakthivel A, Moss TS, Paiva-Santos CO (1995) DBWS-9411—an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers. J Appl Crystallogr 28(3):366–367. doi: 10.1107/S0021889895002160 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R. M. Freire
    • 1
  • T. S. Ribeiro
    • 2
  • I. F. Vasconcelos
    • 2
  • J. C. Denardin
    • 3
  • E. B. Barros
    • 4
  • Giuseppe Mele
    • 5
  • L. Carbone
    • 6
  • S. E. Mazzetto
    • 1
  • P. B. A. Fechine
    • 1
  1. 1.Grupo de Química de Materiais Avançados (GQMAT)- Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do Ceará—UFCFortalezaBrazil
  2. 2.Departamento de Engenharia Metalúrgica e de MateriaisUniversidade Federal do CearáFortalezaBrazil
  3. 3.Departamento de FísicaUniversidad de Santiago de Chile, USACHSantiagoChile
  4. 4.Departamento de FísicaUniversidade Federal do Ceará—UFCFortalezaBrazil
  5. 5.Dipartimento di Ingegneria dell’InnovazioneUniversità del SalentoLecceItaly
  6. 6.IPCF-CNR, UOS PisaPisaItaly

Personalised recommendations