Patchy silica-coated silver nanowires as SERS substrates

  • Simona E. Hunyadi MurphEmail author
  • Catherine J. Murphy
Research Paper


We report a class of core–shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4-mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV–visible spectroscopy, and phase-analysis light-scattering for measuring effective surface charge. Surprisingly, the patchy silica-coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.


Patchy nanostructures SERS Silver nanowires Silica 


  1. Billot L, Chapelle ML, Grimault AS et al (2006) Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement. Chem Phys Lett 422:303–307CrossRefGoogle Scholar
  2. Blatchford CG, Campbell JR, Creighton JA (1982) Plasma resonance enhanced Raman scattering by adsorbates on gold colloids- The effects of aggregation. Surf Sci 120:435–438CrossRefGoogle Scholar
  3. Blatchford CG, Silman O, Kerker M (1983) Potential dependence of surface-enhanced Raman scattering from citrate on colloidal silver. J Phys Chem 87:2503–2508CrossRefGoogle Scholar
  4. Caswell KK, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3:667–669CrossRefGoogle Scholar
  5. Chen MM, Ming M, Katz A (2002) Synthesis and characterization of gold-silica nanoparticles incorporating a mercaptosilane core-shell interface. Langmuir 8:8566–8572CrossRefGoogle Scholar
  6. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman-scattering by pyridine adsorbed on silver of gold sol particles of size comparable to the excitation wavelength. J Chem Soc, Faraday Trans 75:790–798CrossRefGoogle Scholar
  7. Dawson P, Duenas JA, Boyle MG et al (2011) Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes. Nano Lett 11:365–371CrossRefGoogle Scholar
  8. Doering WE, Nie SM (2002) Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. J Phys Chem B 106:311–317CrossRefGoogle Scholar
  9. dos Santos DS, Alvarez-Puebla RA, Oliveira ON, Aroca RF (2005) Controlling the size and shape of gold nanoparticles in fulvic acid colloidal solutions and their optical characterization using SERS. J Mater Chem 15:3045–3049CrossRefGoogle Scholar
  10. Feldheim D, Foss CA Jr (2002) Metal nanoparticles: synthesis, characterization, and applications. Marcel Dekker Inc., New YorkGoogle Scholar
  11. Hartschuh A, Anderson N, Novotny L (2003) Near-field Raman spectroscopy using a sharp metal tip. J Microsc 210:234–240CrossRefGoogle Scholar
  12. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Near-field Raman scattering enhanced by a metallized tip. Chem Phys Lett 335:369–374CrossRefGoogle Scholar
  13. Hostetler MJ, Templeton AC, Murray RW (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15:3782–3789CrossRefGoogle Scholar
  14. Hunyadi Murph SE, Serkiz S, Fox E et al (2011a) Synthesis, functionalization, characterization and application of controlled shape nanoparticles in energy production, vol 1064. ACS Symposium Series, Washington, pp 127–163Google Scholar
  15. Hunyadi Murph SE, Murphy C, Colon-Mercado H et al (2011b) Tuning of size and shape of Au–Pt nanocatalyst for direct methanol fuel cells. J Nanopart Res 13:6347–6364CrossRefGoogle Scholar
  16. Hunyadi Murph SE, Heroux K, Turick C et al (2012) Metallic and hybrid nanostructures: fundamentals and applications in applications of nanomaterials. In: Govil JN (ed) Nanomaterials and nanostructures, Vol. 4, Studium Press LLC, Houston. ISBN: 1-62699-000-X, ISBN: 1-62699-004-2Google Scholar
  17. Hunyadi S, Murphy C (2006a) Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman scattering. J Mater Chem 16:3929–3935CrossRefGoogle Scholar
  18. Hunyadi SE, Murphy CJ (2006b) Tunable one-dimensional silver-silica nanopeapod architectures. J Phys Chem B 110:7226–7231CrossRefGoogle Scholar
  19. Imura K, Nagahara T, Okamoto H (2004) Plasmon mode imaging of single gold nanorods. J Am Chem Soc 126:12730–12731CrossRefGoogle Scholar
  20. Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. PNAS 101:17930–17935CrossRefGoogle Scholar
  21. Jensen TR, Schatz GC, Van Duyne RP (1999) Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling. J Phys Chem B 103:2394–2401CrossRefGoogle Scholar
  22. Jun YW, Choi JS, Cheon J (2006) Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed Engl 45:3414–3439CrossRefGoogle Scholar
  23. Kaifer A (2001) Supramolecular electrochemistry. Wiley, Coral Gables, pp 191–193Google Scholar
  24. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  25. Kerker M, Siiman O, Wang DS (1984) Effect of aggregates on extinction and surface-enhanced Raman scattering spectra of colloidal silver. J Phys Chem 88:3168–3170CrossRefGoogle Scholar
  26. Kneipp K, Wang Y, Kneipp H et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670CrossRefGoogle Scholar
  27. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999a) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2975CrossRefGoogle Scholar
  28. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999b) Surface-enhanced Raman scattering: a new tool for biomedical spectroscopy. Curr Sci 77:915–924Google Scholar
  29. Laor U, Schatz GC (1982) The effect of randomly distributed surface bumps on local field enhancements in surface enhanced Raman spectroscopy. J Phys Chem 76:2888–2899CrossRefGoogle Scholar
  30. Lin SY, Tsai YT, Chen CC et al (2004) Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized Au nanoparticles. J Phys Chem B 108:2134–2139CrossRefGoogle Scholar
  31. Lisiecki I (2005) Size, shape, and structural control of metallic nanocrystals. J Phys Chem B 109:12231–12244CrossRefGoogle Scholar
  32. Liu GL, Lu Y, Kim J, Doll JC, Lee LP (2005) Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging. Adv Mater 17:2683–2687CrossRefGoogle Scholar
  33. Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12:4329–4335CrossRefGoogle Scholar
  34. Love JC, Estroff LA, Kriebel JK et al (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170CrossRefGoogle Scholar
  35. Lucas M, Leach AM, McDowell MT, Hunyadi SE, Gall K, Murphy CJ, Riedo E (2008) Plastic deformation of pentagonal silver nanowires: comparison between AFM nanoindentation and atomistic simulations. Phys Rev B 77:2452014–2454201Google Scholar
  36. Mahmoud MA, Chamanzar M, Adibi A, El-Sayed MA (2012) Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. J Am Chem Soc 134:6434–6442CrossRefGoogle Scholar
  37. McLellan JM, Xiong YJ, Hu M, Xia YN (2006) Surface-enhanced Raman scattering of 4-mercaptopyridine on thin films of nanoscale Pd cubes, boxes, and cages. Chem Phys Lett 417:230–234CrossRefGoogle Scholar
  38. Mine EM, Samada A, Kobayashi Y et al (2003) Direct coating of gold nanoparticles with silica by a seeded polymerization technique. J Colloid Interface Sci 264:385–390CrossRefGoogle Scholar
  39. Moskovits M, Sun JS (1984) Surface selection-rules for surface-enhanced raman-spectroscopy-calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J Phys Chem 88:5526–5530CrossRefGoogle Scholar
  40. Murphy C, Sau T, Hunyadi S et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870CrossRefGoogle Scholar
  41. Nikoobakht B, El-Sayed MA (2003) Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A 107:3372–3378CrossRefGoogle Scholar
  42. Obare SO, Jana NR, Murphy CJ (2001) Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett 1:601–603CrossRefGoogle Scholar
  43. Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 77:3261–3266CrossRefGoogle Scholar
  44. Orendorff CJ, Gearheart L, Jana NR, Murphy CJ (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8:165–170CrossRefGoogle Scholar
  45. Park HK, Kim K (2006) Facile method to prepare surface-enhanced-Raman-scattering-active Ag nanostructures on silica spheres. Langmuir 22(19):8083–8086CrossRefGoogle Scholar
  46. Pinzaru SC, Pavel I, Leopold N, Kiefer W (2004) Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering. J Raman Spectrosc 35:338–346CrossRefGoogle Scholar
  47. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117CrossRefGoogle Scholar
  48. Ruan CM, Wang W, Gu AH (2006) Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles. Anal Chim Acta 567:114–120CrossRefGoogle Scholar
  49. Santra P, Zhang K, Wang R et al (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993CrossRefGoogle Scholar
  50. Schierhorn M, Lee SJ, Boettcher SW et al (2006) Metal-silica hybrid nanostructures for surface-enhanced Raman spectroscopy. Adv Mater 18:2829–2832CrossRefGoogle Scholar
  51. Schwartz DK (2001) Mechanisms and kinetics of self-assembled monolayer formation. Annu Rev Phys Chem 52:107–137CrossRefGoogle Scholar
  52. Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704CrossRefGoogle Scholar
  53. Solecka-Cermakova K (1996) Structural characteristics of Ag colloid-adsorbate films determined from transmission electron microscopic images: fractal dimensions, particle size, and spacing distributions and their relationship to formation and optical responses of the films. J Phys Chem 100:4954–4960CrossRefGoogle Scholar
  54. Song C, Abell J, He Y, Hunyadi Murph SE et al (2012) Gold-modified silver nanorod arrays: growth dynamics and improved SERS properties. J Mater Chem 22:1150–1159CrossRefGoogle Scholar
  55. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A 368:1333–1383CrossRefGoogle Scholar
  56. Stewart I, Zheng S, McCourt MR, Bell SEJ (2012) Controlling assembly of mixed thiol monolayers on silver nanoparticles to tune their surface properties. ACS Nano 6:3718–3726CrossRefGoogle Scholar
  57. Stöckle RM, Suh YD, Deckert RZV (2000) Nanoscale chemical analysis by tip- enhanced Raman spectroscopy. Chem Phys Lett 318:131–136CrossRefGoogle Scholar
  58. Sur I, Altunbek M, Kahraman M, Culha M (2012) The influence of the surface chemistry of silver nanoparticles on cell death. Nanotechnology 23:375102CrossRefGoogle Scholar
  59. Tao CG, Cullen WG, Williams ED, Hunyadi SE, Murphy CJ (2007) Surface morphology and step fluctuations on silver nanowires. Surf Sci 601:4939–4943CrossRefGoogle Scholar
  60. Tian C, Ding C, Liu S et al (2011) Nanoparticle attachment on silver corrugated-wire nanoantenna for large increases of surface-enhanced Raman scattering. ACS Nano 5:9442–9449CrossRefGoogle Scholar
  61. Vo-Dinh T, Yan F, Wabuyele MB (2006) Surface-enhanced Raman scattering for biomedical diagnostics and molecular imaging. Top Appl Phys 103:409–426CrossRefGoogle Scholar
  62. Vos JG, Forster RJ, Keyes TE (2003) Interfacial supramolecular assemblies. Wiley, New York, pp 88–94CrossRefGoogle Scholar
  63. Wang H, Levin CS, Halas NJ (2005) Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J Am Chem Soc 127:14992–14993CrossRefGoogle Scholar
  64. Wei H, Hao F, Huang YZ et al (2008) Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett 8:2497–2502CrossRefGoogle Scholar
  65. Wiley B, Sun Y, Xia Y (2005) Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir 21:8077–8080CrossRefGoogle Scholar
  66. Xia Y, Yang P, Sun Y, Wu Y et al (2003) One dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  67. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670CrossRefGoogle Scholar
  68. Zhang X, Zhao J, Whitney AV et al (2006) Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J Am Chem Soc 128:10304–10309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2013

Authors and Affiliations

  • Simona E. Hunyadi Murph
    • 1
    Email author
  • Catherine J. Murphy
    • 2
  1. 1.Savannah River National Laboratory, Savannah River SiteAikenUSA
  2. 2.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations