Advertisement

Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells

  • Marine Perrier
  • Magali Gary-Bobo
  • Lenaïc Lartigue
  • David Brevet
  • Alain Morère
  • Marcel Garcia
  • Philippe Maillard
  • Laurence Raehm
  • Yannick Guari
  • Joulia Larionova
  • Jean-Olivier Durand
  • Olivier Mongin
  • Mireille Blanchard-Desce
Research Paper

Abstract

An original fluorophore engineered for two-photon excitation or a porphyrin derivative were entrapped in the silica shell of magnetic porous silica nanoparticles during the synthesis of the silica moiety without damaging the structure of the organic part. The mild conditions involved allowed obtaining microporous or mesoporous silica magnetic nanoparticles, respectively. Mannose was grafted on the surface of the nanoparticles to target MCF-7 breast cancer cells. The studies of magnetic properties of these hybrid nanoparticles show that they present a blocking temperature at 190 K. The nano-objects designed with the two-photon fluorophore were efficient for two-photon imaging of MCF-7 cancer cells, whereas the nano-objects with the photosensitizer efficiently killed cancer cells. The presence of the mannose moiety was demonstrated to improve both imaging and therapy properties.

Keywords

Photodynamic therapy Two-photon imaging Magnetic meosoporous silica nanoparticles Mannose 

Notes

Acknowledgments

GDR “GDR CNRS 3049 Photomed Médicaments photoactivables—Photochimiothérapie,” Association pour la Recherche sur le Cancer” no SFI20101201906 and the non-profit organization Rétinostop is gratefully acknowledged. We gratefully thank Michel Gleizes for technical assistance, Emmanuel Schaub from PIXEL platform (multiphotonic microscopy facilities, University of Rennes 1), Corine Reibel and PAC, ICGM for magnetic measurements. L. L. thanks the UFI (GF/IR/732/07, no 25) for financial support. J.O.D, J.L., M.P., Y. G., L.R. thank CNRS, Université Montpellier 2 for financial support.

Supplementary material

11051_2013_1602_MOESM1_ESM.docx (252 kb)
Supplementary material 1 (DOCX 252 kb)

References

  1. Bechet D, Couleaud P, Frochot C, Viriot M-L, Guillemin F, Barberi-Heyob M (2008) Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol 26(11):612–621CrossRefGoogle Scholar
  2. Brevet D, Gary-Bobo M, Raehm L, Richeter S, Hocine O, Amro K, Loock B, Couleaud P, Frochot C, Morere A, Maillard P, Garcia M, Durand JO (2009) Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun 12:1475–1477. doi: 10.1039/b900427k CrossRefGoogle Scholar
  3. Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  4. Castanon SL, Beristain MF, Ortega A, Gomez-Sosa G, Munoz E, Perez-Martinez AL, Ogawa T, Halim MF, Smith F, Walser A, Dorsinville R (2011) The synthesis, characterization and third-order nonlinear optical character of poly(2,5-dipropargyloxybenzoate) containing a polar aromatic diacetylene. Dyes Pigment 88(2):129–134. doi: 10.1016/j.dyepig.2010.05.012 CrossRefGoogle Scholar
  5. Chang B, Guo J, Liu C, Qian J, Yang W (2010) Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 20(44):9941–9947CrossRefGoogle Scholar
  6. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60(15):1627–1637CrossRefGoogle Scholar
  7. Chelebaeva E, Raehm L, Durand JO, Guari Y, Larionova J, Guerin C, Trifonov A, Willinger M, Thangavel K, Lascialfari A, Mongin O, Mir Y, Blanchard-Desce M (2010) Mesoporous silica nanoparticles combining two-photon excited fluorescence and magnetic properties. J Mater Chem 20(10):1877–1884. doi: 10.1039/b922052f CrossRefGoogle Scholar
  8. Chikazumi S (1997) Physics of ferromagnetism, 2nd edn. Clarendon, OxfordGoogle Scholar
  9. Coti KK, Belowich ME, Liong M, Ambrogio MW, Lau YA, Khatib HA, Zink JI, Khashab NM, Stoddart JF (2009) Mechanised nanoparticles for drug delivery. Nanoscale 1(1):16–39CrossRefGoogle Scholar
  10. Couleaud P, Morosini V, Frochot C, Richeter S, Raehm L, Durand JO (2010) Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2(7):1083–1095. doi: 10.1039/c0nr00096e CrossRefGoogle Scholar
  11. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76CrossRefGoogle Scholar
  12. Djurberg C, Svedlindh P, Nordblad P, Hansen MF, Bodker F, Morup S (1997) Dynamics of an interacting particle system: evidence of critical slowing down. Phys Rev Lett 79(25):5154–5157. doi: 10.1103/PhysRevLett.79.5154 CrossRefGoogle Scholar
  13. Eaton DF (1988) Reference materials for fluorescence measurement. Pure Appl Chem 60(7):1107–1114CrossRefGoogle Scholar
  14. Feng J, Song SY, Deng RP, Fan WQ, Zhang HJ (2010) Novel multifunctional nanocomposites: magnetic mesoporous silica nanospheres covalently bonded with near-infrared luminescent lanthanide complexes. Langmuir 26(5):3596–3600. doi: 10.1021/la903008z CrossRefGoogle Scholar
  15. Folch B, Larionova J, Guari Y, Molvinger K, Luna C, Sangregorio C, Innocenti C, Caneschi A, Guerin C (2010) Synthesis and studies of water-soluble prussian blue-type nanoparticles into chitosan beads. Phys Chem Chem Phys 12(39):12760–12770. doi: 10.1039/c002432e CrossRefGoogle Scholar
  16. Gai SL, Yang PP, Li CX, Wang WX, Dai YL, Niu N, Lin J (2010) Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv Funct Mater 20(7):1166–1172. doi: 10.1002/adfm.200902274 CrossRefGoogle Scholar
  17. Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, Vaillant O, Mongin O, Blanchard-Desce M, Morere A, Garcia M, Durand J-O, Raehm L (2011) Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew Chem Int Ed 50(48):11425–11429CrossRefGoogle Scholar
  18. Gary-Bobo M, Hocine O, Brevet D, Maynadier M, Raehm L, Richeter S, Charasson V, Loock B, Morere A, Maillard P, Garcia M, Durand J-O (2012) Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm 423(2):509–515CrossRefGoogle Scholar
  19. Girtu MA (2002) The dynamic susceptibility of a quasi-one-dimensional Mn porphyrin-based hybrid magnet: cole–cole analysis. J Opt Adv Mater 4(1):85–92Google Scholar
  20. He Q, Shi J (2011) Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 21(16):5845–5855CrossRefGoogle Scholar
  21. Hocine O, Gary-Bobo M, Brevet D, Maynadier M, Fontanel S, Raehm L, Richeter S, Loock B, Couleaud P, Frochot C, Charnay C, Derrien G, Smaihi M, Sahmoune A, Morere A, Maillard P, Garcia M, Durand J-O (2010) Silicalites and mesoporous silica nanoparticles for photodynamic therapy. Int J Pharm 402(1–2):221–230CrossRefGoogle Scholar
  22. Huang D-M, Hung Y, Ko B-S, Hsu S-C, Chen W-H, Chien C-L, Tsai C-P, Kuo C-T, Kang J-C, Yang C-S, Mou C-Y, Chen Y-C (2005) Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. Faseb J 19(14):2014–2016Google Scholar
  23. Katan C, Tretiak S, Werts MHV, Bain AJ, Marsh RJ, Leonczek N, Nicolaou N, Badaeva E, Mongin O, Blanchard-Desce M (2007) Two-photon transitions in quadrupolar and branched chromophores: experiment and theory. J Phys Chem B 111(32):9468–9483CrossRefGoogle Scholar
  24. Kim HM, Cho BR (2009) Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues. Acc Chem Res 42(7):863–872. doi: 10.1021/ar800185u CrossRefGoogle Scholar
  25. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441. doi: 10.1002/anie.200802469 CrossRefGoogle Scholar
  26. Lartigue L, Oumzil K, Guari Y, Larionova J, Guerin C, Montero JL, Barragan-Montero V, Sangregorio C, Caneschi A, Innocenti C, Kalaivani T, Arosio P, Lascialfari A (2009) Water-soluble rhamnose-coated Fe3O4 nanoparticles. Org Lett 11(14):2992–2995. doi: 10.1021/ol900949y CrossRefGoogle Scholar
  27. Lartigue L, Innocenti C, Kalaivani T, Awwad A, Duque MdMS, Guari Y, Larionova J, Guerin C, Montero J-LG, Barragan-Montero V, Arosio P, Lascialfari A, Gatteschi D, Sangregorio C (2011) Water-dispersible sugar-coated iron oxide nanoparticles: an evaluation of their relaxometric and magnetic hyperthermia properties. J Am Chem Soc 133(27):10459–10472. doi: 10.1021/ja111448t CrossRefGoogle Scholar
  28. Lartigue L, Oh S, Prouzet E, Guari Y, Larionova J (2012) Superspin-glass behavior of Co-3[Fe(CN)(6)](2) prussian blue nanoparticles confined in mesoporous silica. Mater Chem Phys 132(2–3):438–445. doi: 10.1016/j.matchemphys.2011.11.050 CrossRefGoogle Scholar
  29. Lebret V, Raehm L, Durand JO, Smaihi M, Gerardin C, Nerambourg N, Werts MHV, Blanchard-Desce M (2008a) Synthesis and characterization of fluorescently doped mesoporous nanoparticles for two-photon excitation. Chem Mater 20(6):2174–2183CrossRefGoogle Scholar
  30. Lebret V, Raehm L, Durand JO, Smaihi M, Werts MHV, Blanchard-Desce M, Methy-Gonnod D, Dubernet C (2008b) Surface functionalization of two-photon dye-doped mesoporous silica nanoparticles with folic acid: cytotoxicity studies with HeLa and MCF-7 cancer cells. J Sol Gel Sci Technol 48(1–2):32–39. doi: 10.1007/s10971-008-1724-1 CrossRefGoogle Scholar
  31. Lebret V, Raehm L, Durand JO, Smaihi M, Gerardin C, Nerambourg N, Werts MHV, Blanchard-Desce M, Methy-Gonnod D, Dubernet C (2009) Mesoporous silica nanoparticles for two-photon fluorescence. Med Sci 25(8–9):744–746Google Scholar
  32. Lebret V, Raehm L, Durand JO, Smaihi M, Werts MHV, Blanchard-Desce M, Methy-Gonnod D, Dubernet C (2010) Folic acid-targeted mesoporous silica nanoparticles for two-photon fluorescence. J Biomed Nanotechnol 6(2):176–180. doi: 10.1166/jbn.2010.1112 CrossRefGoogle Scholar
  33. Li X, Xie QR, Zhang J, Xia W, Gu H (2011a) The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials 32(35):9546–9556. doi: 10.1016/j.biomaterials.2011.08.068 CrossRefGoogle Scholar
  34. Li X, Zhang JX, Gu HC (2011b) Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles. Langmuir 27(10):6099–6106. doi: 10.1021/la104653s CrossRefGoogle Scholar
  35. Lin CR, Chiang RK, Wang JS, Sung TW (2006a) Magnetic properties of monodisperse iron oxide nanoparticles. J Appl Phys 99(8): 08n710. doi: 10.1063/1.2172891
  36. Lin Y-S, Wu S-H, Hung Y, Chou Y-H, Chang C, Lin M-L, Tsai C-P, Mou C-Y (2006b) Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous. Chem Mater 18(22):5170–5172CrossRefGoogle Scholar
  37. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896CrossRefGoogle Scholar
  38. Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7(4):425–443. doi: 10.1002/smll.201001402 CrossRefGoogle Scholar
  39. Lu J, Liong M, Sherman S, Xia T, Kovochich M, Nel AE, Zink JI, Tamanoi F (2007a) Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. Nanobiotechnology 3(2):89–95CrossRefGoogle Scholar
  40. Lu J, Liong M, Zink JI, Tamanoi F (2007b) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346. doi: 10.1002/smll.200700005 CrossRefGoogle Scholar
  41. Mongin O, Porres L, Charlot M, Katan C, Blanchard-Desce M (2007) Synthesis, fluorescence, and two-photon absorption of a series of elongated rodlike and banana-shaped quadrupolar fluorophores: a comprehensive study of structure–property relationships. Chem Eur J 13(5):1481–1498. doi: 10.1002/chem.200600689 CrossRefGoogle Scholar
  42. Néel L (1949) Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites. Ann Geophys 5:99–136Google Scholar
  43. Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed 48(18):3244–3266. doi: 10.1002/anie.200805257 CrossRefGoogle Scholar
  44. Robertson CA, Evans DH, Abraharnse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96(1):1–8. doi: 10.1016/j.jphotobiol.2009.04.001 CrossRefGoogle Scholar
  45. Rosenholm JM, Sahlgren C, Linden M (2010) Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles: opportunities and challenges. Nanoscale 2(10):1870–1883CrossRefGoogle Scholar
  46. Slowing I, Trewyn BG, Lin VSY (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128(46):14792–14793CrossRefGoogle Scholar
  47. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288CrossRefGoogle Scholar
  48. Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VSY (2010) Mesoporous silica nanoparticles: structural design and applications. J Mater Chem 20(37):7924–7937CrossRefGoogle Scholar
  49. Suteewong T, Sai H, Lee J, Bradbury M, Hyeon T, Gruner SM, Wiesner U (2010) Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis. J Mater Chem 20(36):7807–7814. doi: 10.1039/c0jm01002b CrossRefGoogle Scholar
  50. Taylor-Pashow KML, Della JR, Huxford RC, Lin WB (2010) Hybrid nanomaterials for biomedical applications. Chem Commun 46(32):5832–5849. doi: 10.1039/c002073g CrossRefGoogle Scholar
  51. Terenziani F, Katan C, Badaeva E, Tretiak S, Blanchard-Desce M (2008) Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments. Adv Mater 20(24):4641–4678. doi: 10.1002/adma.200800402 CrossRefGoogle Scholar
  52. Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, Stoddart JF, Shin JS, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132(31):10623–10625. doi: 10.1021/ja1022267 CrossRefGoogle Scholar
  53. Wandersman E, Dupuis V, Dubois E, Perzynski R, Nakamae S, Vincent E (2008) Growth of a dynamical correlation length in an aging superspin glass. EPL 84(3):37011. doi: 10.1209/0295-5075/84/37011 CrossRefGoogle Scholar
  54. Wang GN, Su XG (2011) The synthesis and bio-applications of magnetic and fluorescent bifunctional composite nanoparticles. Analyst 136(9):1783–1798. doi: 10.1039/c1an15036g CrossRefGoogle Scholar
  55. Wang F, Chen X, Zhao Z, Tang S, Huang X, Lin C, Cai C, Zheng N (2011) Synthesis of magnetic, fluorescent and mesoporous core-shell-structured nanoparticles for imaging, targeting and photodynamic therapy. J Mater Chem 21(30):11244–11252. doi: 10.1039/c1jm10329f CrossRefGoogle Scholar
  56. Wang M, Zhang J, Yuan Z, Yang W, Wu Q, Gu H (2012) Targeted thrombolysis by using of magnetic mesoporous silica nanoparticles. J Biomed Nanotechnol 8(4):624–632. doi: 10.1166/jbn.2012.1416 CrossRefGoogle Scholar
  57. Wu SH, Lin YS, Hung Y, Chou YH, Hsu YH, Chang C, Mou CY (2008) Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. ChemBioChem 9(1):53–57. doi: 10.1002/cbic.200700509 CrossRefGoogle Scholar
  58. Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13(3):481–491CrossRefGoogle Scholar
  59. Zhang J, Li X, Rosenholm JM, Gu H-c (2011) Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. J Coll Int Sci 361(1):16–24. doi: 10.1016/j.jcis.2011.05.038 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Marine Perrier
    • 3
  • Magali Gary-Bobo
    • 1
  • Lenaïc Lartigue
    • 3
  • David Brevet
    • 3
  • Alain Morère
    • 1
  • Marcel Garcia
    • 1
  • Philippe Maillard
    • 4
    • 5
  • Laurence Raehm
    • 3
  • Yannick Guari
    • 3
  • Joulia Larionova
    • 3
  • Jean-Olivier Durand
    • 3
  • Olivier Mongin
    • 6
  • Mireille Blanchard-Desce
    • 2
  1. 1.Institut des Biomolécules Max Mousseron UMR 5247 CNRSFaculté de Pharmacie, Université Montpellier 1, Université Montpellier 2Montpellier Cedex 05France
  2. 2.Institut des Sciences Moléculaires, UMR CNRS 5255Université BordeauxTalence CedexFrance
  3. 3.Institut Charles Gerhardt MontpellierUMR 5253 CNRS-UM2-ENSCM-UM1Montpellier Cedex 05France
  4. 4.UMR 176 CNRS, Institut CurieUniversité Paris-SudOrsayFrance
  5. 5.Section de Recherches, Institut Curie, Centre UniversitaireUniversité Paris-SudOrsayFrance
  6. 6.Institut des Sciences Chimiques de Rennes, CNRS UMR 6226Université de Rennes 1Rennes CedexFrance

Personalised recommendations