Nickel ethylene tetrathiolate polymers as nanoparticles: a new synthesis for future applications?

  • Christophe FaulmannEmail author
  • Joe Chahine
  • Kane Jacob
  • Yannick Coppel
  • Lydie Valade
  • Dominique de Caro
Research Paper


Coordination polymers (CP) based on the ethylene tetrathiolate ligand (C2S4)4− and Ni2+, and previously isolated as insoluble conductive powders are grown as nanoparticles (NP) using ionic liquid (IL) as stabilizing agent. The time of addition of the IL determines the morphology, and consequently the properties of the CP. The smaller (10–20 nm) and soluble NP are obtained when IL is present at the complexation step. The mechanism of growth of NP is studied. The NP size is sensitive to the amount of IL and to the reaction temperature. NPs are studied by TEM/EDX, DLS, liquid- and solid-state NMR, and conductivity.


Nanoparticles Molecular conductors Metal ethylene tetrathiolate Microscopy NMR 



Dimercaptoisotrithione or 1,3-dithiole-2-thione-4,5-dithiolate


Maleonitriledithiolate or dicyano-1,2-ethylene dithiolate










Coordination polymers




Ionic liquid


1-Butyl-3-methyl imidazolium 1-decyl-3-methyl imidazolium




Dynamic light scattering


Energy-dispersive X-ray spectroscopy

Supplementary material

11051_2013_1586_MOESM1_ESM.docx (7.7 mb)
Supplementary material 1 (DOCX 7862 kb)


  1. Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun 2010–2011Google Scholar
  2. Arai M, Miyake M, Yamada M (2008) Metal(II) Hexacyanochromate(III) MCr (M = Co, Cu, Fe) coordination nanoparticles stabilized by alkyl surface coordination ligand: downsizing effect on their crystal structure and magnetic properties. J Phys Chem C 112:1953–1962CrossRefGoogle Scholar
  3. Billard I, Moutiers G, Labet A, El Azzi A, Gaillard C, Mariet C, Lützenkirchen K (2003) Stability of divalent europium in an ionic liquid: spectroscopic investigations in 1-Methyl-3-butylimidazolium Hexafluorophosphate. Inorg Chem 42:1726–1733CrossRefGoogle Scholar
  4. Brinzei D, Catala L, Louvain N, Rogez G, Stephan O, Gloter A, Mallah T (2006) Spontaneous stabilization and isolation of dispersible bimetallic coordination nanoparticles of CsNi[Cr(CN)6]. J Mater Chem 16:2593–2599CrossRefGoogle Scholar
  5. Canongia Lopes JNA, Pádua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335CrossRefGoogle Scholar
  6. Canongia Lopes JN, Costa Gomes MF, Pádua AAH (2006) Nonpolar, polar, and associating solutes in ionic liquids. J Phys Chem B 110:16816–16818CrossRefGoogle Scholar
  7. Carter DA, Pemberton JE, Woelfel KJ (1998) Orientation of 1- and 2-Methylimidazole on silver electrodes determined with surface-enhanced Raman Scattering. J Phys Chem B 102:9870–9880CrossRefGoogle Scholar
  8. Cassoux P (1999) Molecular (super) conductors derived from bis-dithiolate metal complexes. Coord Chem Rev 186:213–232CrossRefGoogle Scholar
  9. Cassoux P, Valade L, Kobayashi H, Kobayashi A, Clark RA, Underhill AE (1991) Molecular metals and superconductors derived from metal complexes of 1,3-dithiol-2-thione-4,5- dithiolate (dmit). Coord Chem Rev 110:115–160CrossRefGoogle Scholar
  10. Catala L, Mathoniere C, Gloter A, Stephan O, Gacoin T, Boilot J-P, Mallah T (2005) Photomagnetic nanorods of the Mo(CN)8Cu2 coordination network. Chem Commun 746–748Google Scholar
  11. Catala L, Gloter A, Stephan O, Rogez G, Mallah T (2006) Superparamagnetic bimetallic cyanide-bridged coordination nanoparticles with TB = 9 K. Chem Commun 1018–1020Google Scholar
  12. Chelebaeva E, Guari Y, Larionova J, Trifonov A, Guérin C (2008) Soluble ligand-stabilized cyano-bridged coordination polymer nanoparticles. Chem Mat 20:1367–1375CrossRefGoogle Scholar
  13. Clavel G, Guari Y, Larionova J, Guerin C (2005) Formation of cyano-bridged molecule-based magnetic nanoparticles within hybrid mesoporous silica. New J Chem 29:275–279CrossRefGoogle Scholar
  14. Clavel G, Larionova J, Guari Y, Guérin C (2006) Synthesis of cyano-bridged magnetic nanoparticles using room-temperature ionic liquids. Chem Eur J 12:3798–3804CrossRefGoogle Scholar
  15. Clemenson PI (1990) The chemistry and solid state properties of nickel, palladium and platinum bis(maleonitriledithiolate) compounds. Coord Chem Rev 106:171–203CrossRefGoogle Scholar
  16. Consorti CS, Suarez PAZ, de Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, da Silva LHM, Dupont J (2005) Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 109:4341–4349CrossRefGoogle Scholar
  17. de Caro D, Jacob K, Faulmann C, Legros J-P, Senocq F, Fraxedas J, Valade L (2010) Ionic liquid-stabilized nanoparticles of charge transfer-based conductors. Synth Met 160:1223–1227CrossRefGoogle Scholar
  18. de Caro D, Jacob K, Hahioui H, Faulmann C, Valade L, Kadoya T, Mori T, Fraxedas J, Viau L (2011) Nanoparticles of organic conductors: synthesis and application as electrode material in organic field effect transistors. New J Chem 35:1315–1319CrossRefGoogle Scholar
  19. Delhaes P, Garrigou-Lagrange C, Dupart E, Fabre JM (1986) Electronic and vibrational absorption spectra of radical cation salts based on TTF derivatives. Mol Cryst Liq Cryst 137:151–168CrossRefGoogle Scholar
  20. DeLongchamp DM, Hammond PT (2004) High-contrast electrochromism and controllable dissolution of assembled prussian blue/polymer nanocomposites. Adv Funct Mater 14:224–232CrossRefGoogle Scholar
  21. Dirk CW, Bousseau M, Barrett PH, Moraes F, Wudl F, Heeger AJ (1986) Metal poly(benzodithiolenes). Macromolecules 19:266–269CrossRefGoogle Scholar
  22. Domínguez-Vera JM, Colacio E (2003) Nanoparticles of Prussian blue ferritin: a new route for obtaining nanomaterials. Inorg Chem 42:6983–6985CrossRefGoogle Scholar
  23. Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350CrossRefGoogle Scholar
  24. Dyson PJ, Geldbach TJ (2005) Metal catalysed reactions in ionic liquids in catalysis by metal complexe, vol 29. Dordrecht, The Netherlands, Springer, 246 pGoogle Scholar
  25. Engler EM, Nichols KH, Patel VV, Rivera NM, Schumaker RR (1978) Highly conducting organometallic polymers, US Patent 4111857Google Scholar
  26. Faulmann C, Cassoux P (2004) Solid state properties (electronic, magnetic, optical) of dithiolene complex-based compounds. In: Stiefel EI (ed) Dithiolene chemistry: synthesis, properties, and applications. Wiley Inc, Hoboken, pp 399–489Google Scholar
  27. Faulmann C, Cassoux P, Vicente R, Ribas J, Jolly CA, Reynolds JR (1989) Conductive amorphous metal-tetrathiolato polymers: synthesis of a new precursor C6O2S8 and its derived polymers and laxs structural studies. Synth Met 29:557–562CrossRefGoogle Scholar
  28. Folch B, Larionova J, Guari Y, Datas L, Guerin C (2006) A coordination polymer precursor approach to the synthesis of NiFe bimetallic nanoparticles within hybrid mesoporous silica. J Mater Chem 16:4435–4442CrossRefGoogle Scholar
  29. Folch B, Guari Y, Larionova J, Luna C, Sangregorio C, Innocenti C, Caneschi A, Guerin C (2008) Synthesis and behaviour of size controlled cyano-bridged coordination polymer nanoparticles within hybrid mesoporous silica. New J Chem 32:273–282CrossRefGoogle Scholar
  30. Fritzinger B, Moreels I, Lommens P, Koole R, Hens Z, Martins JC (2009) In Situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy. J Am Chem Soc 131:3024–3032CrossRefGoogle Scholar
  31. Garreau de Bonneval B, Faulmann C, Verelst M, Lecante P, Malfant I, Cassoux P (2003) Structural study and magnetic properties of new [(Cp*2M)x(NiC2S4)]n polymer salts. Synth Met 133–134:597–599CrossRefGoogle Scholar
  32. Guari Y, Larionova J, Molvinger K, Folch B, Guerin C (2006) Magnetic water-soluble cyano-bridged metal coordination nano-polymers. Chem Commun 2613–2615Google Scholar
  33. Guari Y, Larionova J, Corti M, Lascialfari A, Marinone M, Poletti G, Molvinger K, Guerin C (2008) Cyano-bridged coordination polymer nanoparticles with high nuclear relaxivity: toward new contrast agents for MRI. Dalton Trans 3658–3660Google Scholar
  34. Gutel T, Garcia-Anton J, Pelzer K, Philippot K, Santini CC, Chauvin Y, Chaudret B, Basset J-M (2007) Influence of the self-organization of ionic liquids on the size of ruthenium nanoparticles: effect of the temperature and stirring. J Mater Chem 17:3290–3292CrossRefGoogle Scholar
  35. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576CrossRefGoogle Scholar
  36. Hanelt S, Liebscher J (2008) A novel and versatile access to task-specific ionic liquids based on 1,2,3-Triazolium Salts. Synlett 7:1058–1060Google Scholar
  37. Harjani JR, Singer RD, Garcia MT, Scammells PJ (2008) The design and synthesis of biodegradable pyridinium ionic liquids. Green Chem 10:436–438CrossRefGoogle Scholar
  38. Holbrey JD, Seddon KR (1999) Ionic liquids in clean products and processes. Springer, Berlin, pp 223–236Google Scholar
  39. Holdcroft GE, Underhill AE (1985) Synthesis and physical properties of transition metal tetrathiolate macromolecules. Mol Cryst Liq Cryst 118:365–369CrossRefGoogle Scholar
  40. Jeon Y, Sung J, Seo C, Lim H, Cheong H, Kang M, Moon B, Ouchi Y, Kim D (2008) Structures of ionic liquids with different anions studied by infrared vibration spectroscopy. J Phys Chem B 112:4735–4740CrossRefGoogle Scholar
  41. Larionova J, Guari Y, Sayegh H, Guérin C (2007) Synthesis of soluble coordination polymer nanoparticles using room-temperature ionic liquid. Inorg Chim Acta 360:3829–3836CrossRefGoogle Scholar
  42. Larionova J, Guari Y, Blanc C, Dieudonné P, Tokarev A, Guérin C (2008a) Toward organization of cyano-bridged coordination polymer nanoparticles within an ionic liquid crystal. Langmuir 25:1138–1147CrossRefGoogle Scholar
  43. Larionova J, Guari Y, Tokarev A, Chelebaeva E, Luna C, Sangregorio C, Caneschi A, Guérin C (2008b) Coordination polymer nano-objects into ionic liquids: nanoparticles and superstructures. Inorg Chim Acta 361:3988–3996CrossRefGoogle Scholar
  44. MacFarlane DR, Golding J, Forsyth S, Forsyth M, Deacon GB (2001) Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem Commun 1430–1431Google Scholar
  45. Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76CrossRefGoogle Scholar
  46. Matsubayashi G-E (1996) Structures and properties of bulky metal complexes with the sulfur-rich dithiolato ligand, C3S52-, and the selenium analog, C3Se52-, as electrical conductors. Trends Inorg Chem 4:79–92Google Scholar
  47. Matsumoto H, Kageyama H, Miyazaki Y (2002) Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions. Chem Commun 1726–1727Google Scholar
  48. Mirzaei YR, Twamley B, Shreeve JM (2002) Syntheses of 1-Alkyl-1,2,4-triazoles and the formation of quaternary 1-Alkyl-4-polyfluoroalkyl-1,2,4-triazolium salts leading to ionic liquids. J Org Chem 67:9340–9345CrossRefGoogle Scholar
  49. Mohammad A, Inamuddin D (2012) Green solvents II: properties and applications of ionic liquids. Springer, Netherlands, p 506Google Scholar
  50. Moore JG, Lochner EJ, Ramsey C, Dalal NS, Stiegman AE (2003) Transparent, superparamagnetic KIxCoIIy [FeIII(CN)6] silica nanocomposites with tunable photomagnetism. Angew Chem Int Ed 42:2741–2743CrossRefGoogle Scholar
  51. Nalwa HS (1990) Electrically conducting organometallic polymers. Appl Organomet Chem 4:91–102CrossRefGoogle Scholar
  52. Olk RM, Olk B, Dietzsch W, Kirmse R, Hoyer E (1992) The chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit). Coord Chem Rev 117:99–131CrossRefGoogle Scholar
  53. Ott LS, Cline ML, Deetlefs M, Seddon KR, Finke RG (2005) Nanoclusters in ionic liquids: evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by 2H NMR. J Am Chem Soc 127:5758–5759CrossRefGoogle Scholar
  54. Patrascu C, Sugisaki C, Mingotaud C, Marty JD, Genisson Y (2004) Lauth de Viguerie N. Heterocycles 63:2033–2041CrossRefGoogle Scholar
  55. Piotraschke J, Pullen AE, Abboud KA, Reynolds JR (1995) Extensively conjugated bimetallic (μ-Tetrathiooxalato)copper(II) complex (Bu4N)2[(C3S5)CuC2S4Cu(C3S5)] for electrically conducting charge transfer complexes. Inorg Chem 34:4011–4012CrossRefGoogle Scholar
  56. Pokhodnya KI, Faulmann C, Malfant I, Andreu-Solano R, Cassoux P, Mlayah A, Smirnov D, Leotin J (1999) Infrared and Raman properties of [M(dmit)2] (M = Ni, Pd) based compounds. Synth Met 103:2016–2019CrossRefGoogle Scholar
  57. Poleschner H, John W, Kempe G, Hoyer E (1978) Tetrathiafulvalenes. New tetrathiafulvalene-dithiole-metal complex polymers with electroconducting properties. Zeitschrift fuer Chemie 18:345–346CrossRefGoogle Scholar
  58. Poleschner H, John W, Hoppe F, Fanghaenel E, Roth S (1983) Tetrathiafulvalenes. XIX. Synthesis and properties of electron conducting poly(dithiolene) complexes with ethylenetetrathiolate and tetrathiafulvalenetetrathiolate as bridge ligands. J Prakt Chem 325:957–975CrossRefGoogle Scholar
  59. Pullen AE, Olk R-M (1999) The coordination chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit) and isologs. Coord Chem Rev 188:211–262CrossRefGoogle Scholar
  60. Pullen AE, Zeltner S, Olk R-M, Hoyer E, Abboud KA, Reynolds JR (1996) Extensively conjugated dianionic tetrathiooxalate-bridged copper(II) complexes for synthetic metals. Inorg Chem 35:4420–4426CrossRefGoogle Scholar
  61. Pullen AE, Olk R-M, Zeltner S, Hoyer E, Abboud KA, Reynolds JR (1997a) A new generation of nickel-dmit-based molecular conductors based on fully conjugated bimetallic complexes. Inorg Chem 36:958–959CrossRefGoogle Scholar
  62. Pullen AE, Zeltner S, Olk R-M, Hoyer E, Abboud KA, Reynolds JR (1997b) Electrically conducting materials based on μ-tetrathiooxalato-bridged bimetallic Ni(II) anionic complexes. Inorg Chem 36:4163–4171CrossRefGoogle Scholar
  63. Ribas J, Cassoux P (1981) Essential role of oxidation in the synthesis of tetrathiafulvalene-nickel bis (dithiolene) polymers with high conductivity. C R Acad Sci Ser 2(293):665–670Google Scholar
  64. Rivera NM, Engler EM, Schumaker RR (1979) Synthesis and properties of tetrathiafulvalene-metal bisdithiolene macromolecules. J Chem Soc Chem Commun 184–185Google Scholar
  65. Schroder U, Wadhawan JD, Compton RG, Marken F, Suarez PAZ, Consorti CS, de Souza RF, Dupont J (2000) Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids. New J Chem 24:1009–1015CrossRefGoogle Scholar
  66. Schumaker RR, Engler EM (1977) Thiapen chemistry. 2. Synthesis of 1,3,4,6-tetrathiapentalene-2,5-dione. J Am Chem Soc 99:5521–5522CrossRefGoogle Scholar
  67. Shaw DJ (1992) Introduction to colloid and surface chemistry (colloid and surface engineering). 4th edn, Oxford Butterworth-HeinemannGoogle Scholar
  68. Steimecke G, Sieler HJ, Kirmse R, Hoyer E (1979) 1,3-Dithiole-2-thione-4,5-dithiolate from carbon disulfide and alkali metal. Phosphorus Sulfur 7:49–55Google Scholar
  69. Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D (2012) Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater 24:932–937CrossRefGoogle Scholar
  70. Tait S, Osteryoung RA (1984) Infrared study of ambient-temperature chloroaluminates as a function of melt acidity. Inorg Chem 23:4352–4360CrossRefGoogle Scholar
  71. Talaty ER, Raja S, Storhaug VJ, Dölle A, Carper WR (2004) Raman and infrared spectra and ab Initio calculations of C2–4MIM imidazolium hexafluorophosphate ionic liquids. J Phys Chem B 108:13177–13184CrossRefGoogle Scholar
  72. Tang Y, Gan X, Tan M (1999) Preparation and properties of conductive amorphous mercury tetrathiolato polymers. Indian J Chem, Sect A: Inorg, Bio-inorg, Phys, Theor Anal Chem 38A:587–589Google Scholar
  73. Tsunashima K, Yonekawa F, Sugiya M (2008) A lithium battery electrolyte based on a room-temperature phosphonium ionic liquid. Chem Lett 37:314–315CrossRefGoogle Scholar
  74. Uemura T, Kitagawa S (2003) Prussian Blue nanoparticles protected by poly(vinylpyrrolidone). J Am Chem Soc 125:7814–7815CrossRefGoogle Scholar
  75. Uemura T, Ohba M, Kitagawa S (2004) Size and surface effects of Prussian Blue nanoparticles protected by organic polymers. Inorg Chem 43:7339–7345CrossRefGoogle Scholar
  76. Underhill AE, Clark RA, Clemenson PI, Friend R, Allen M, Marsden I, Kobayashi A, Kobayashi H (1992) Molecular conductors based on complex metal anions. Phosphorus, Sulfur Silicon Relat Elem 67:311–325CrossRefGoogle Scholar
  77. Vainrub A, Canadell E, Jerome D, Bernier P, Nunes T, Bruniquel MF, Cassoux P (1990) Temperature-dependent locally resolved carbon-13 Knight shifts in the organic conductor TTF[Ni(dmit)2]2. J Phys 51:2465–2476CrossRefGoogle Scholar
  78. Vicente R, Ribas J, Cassoux P (1984) Unexpected mononuclear metal complexes derived from 1,3,4,6-tetrathiapentalene-2,5-dione. Nouveau Journal de Chimie 8:653–658Google Scholar
  79. Vicente R, Ribas J, Cassoux P, Valade L (1986) Synthesis, characterization and properties of highly conducting organometallic polymers derived from the ethylenetetrathiolate anion. Synth Met 13:265–280CrossRefGoogle Scholar
  80. Vogt T, Faulmann C, Soules R, Lecante P, Mosset A, Castan P, Cassoux P, Galy J (2002) A LAXS (large angle x-ray scattering) and EXAFS (extended x-ray absorption fine structure) investigation of conductive amorphous nickel tetrathiolato polymers. J Am Chem Soc 110:1833–1840CrossRefGoogle Scholar
  81. Vondrova M, Klimczuk T, Miller VL, Kirby BW, Yao N, Cava RJ, Bocarsly AB (2005) Supported superparamagnetic Pd/Co alloy nanoparticles prepared from a silica/cyanogel co-gel. Chem Mater 17:6216–6218CrossRefGoogle Scholar
  82. Wudl F, Heeger AJ, Dirk CW (1986) Transition metal poly(benzodithiolene), US Patent 4626586Google Scholar
  83. Yoshioka N, Nishide H, Inagaki K, Tsuchida E (1990) Electrical conductive and magnetic properties of conjugated tetrathiolate nickel polymers. Polym Bull 23:631–636CrossRefGoogle Scholar
  84. Zhou PH, Xue DS (2004) Finite-size effect on magnetic properties in Prussian blue nanowire arrays. J Appl Phys 96:610–614CrossRefGoogle Scholar
  85. Zhou P, Xue D, Luo H, Chen X (2002) Fabrication, structure, and magnetic properties of highly ordered Prussian Blue nanowire arrays. Nano Lett 2:845–847CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Christophe Faulmann
    • 1
    • 2
    Email author
  • Joe Chahine
    • 1
    • 2
  • Kane Jacob
    • 1
    • 2
  • Yannick Coppel
    • 1
    • 2
  • Lydie Valade
    • 1
    • 2
  • Dominique de Caro
    • 1
    • 2
  1. 1.Laboratoire de Chimie de Coordination (LCC-CNRS UPR 8241)Toulouse Cedex 4France
  2. 2.Université de Toulouse, UPS, INPT, LCCToulouseFrance

Personalised recommendations