Capture of unstable protein complex on the streptavidin-coated single-walled carbon nanotubes

  • Zunfeng LiuEmail author
  • Patrick Voskamp
  • Yue Zhang
  • Fuqiang Chu
  • Jan Pieter AbrahamsEmail author
Brief Communication


Purification of unstable protein complexes is a bottleneck for investigation of their 3D structure and in protein–protein interaction studies. In this paper, we demonstrate that streptavidin-coated single-walled carbon nanotubes (Strep•SWNT) can be used to capture the biotinylated DNA–EcoRI complexes on a 2D surface and in solution using atomic force microscopy and electrophoresis analysis, respectively. The restriction enzyme EcoRI forms unstable complexes with DNA in the absence of Mg2+. Capturing the EcoRI–DNA complexes on the Strep•SWNT succeeded in the absence of Mg2+, demonstrating that the Strep•SWNT can be used for purifying unstable protein complexes.


Unstable protein complex Carbon nanotube Streptavidin EcoRI 



The authors gratefully acknowledge the financial support from The Netherlands Organisation for Scientific Research (NWO), Veni Grant 2009 (Project Number: 700.59.407), Cyttron II:, the National Natural Science Foundation of China (Grant No. 31200637), Jiangsu Basic Research Program (The Natural Science Fund No. SBK201240183), and the Science and Technology Support Program of Changzhou (Social Development Grant No. CE20125050). We thank René Olsthoorn, Claude Backendorf, and Hans den Dulk for technical support.


  1. Austin RJ, Biggin MD (1996) Purification of the Drosophila RNA polymerase II general transcription factors. Proc Natl Acad Sci USA 93:5788–5792CrossRefGoogle Scholar
  2. Berggard T, Linse S, James P (2007) Methods for the detection and analysis of protein–protein interactions. Proteomics 7:2833–2842CrossRefGoogle Scholar
  3. Burckstummer T, Bennett KL, Preradovic A, Schutze G, Hantschel O, Superti-Furga G, Bauch A (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3:1013–1019CrossRefGoogle Scholar
  4. Chen JP (1990) Novel affinity-based processes for protein-purification. J Ferment Bioeng 70:199–209CrossRefGoogle Scholar
  5. Dame RT, Goosen N (2002) HU: promoting or counteracting DNA compaction? FEBS Lett 529:151–156CrossRefGoogle Scholar
  6. Frank J (2002) Single-particle imaging of macromolecules by cryo-electron microscopy. Annu Rev Biophys Biomol 31:303–319CrossRefGoogle Scholar
  7. Liu ZF, Galli F, Janssen KGH, Jiang LH, van der Linden HJ, de Geus DC, Voskamp P, Kuil ME, Olsthoorn RCL, Oosterkamp TH, Hankemeier T, Abrahams JP (2010a) Stable single-walled carbon nanotube–streptavidin complex for biorecognition. J Phys Chem C 114:4345–4352CrossRefGoogle Scholar
  8. Liu ZF, Jiang LH, Galli F, Nederlof I, Olsthoorn RCL, Lamers GEM, Oosterkamp TH, Abrahams JP (2010b) A graphene oxide•streptavidin complex for biorecognition—towards affinity purification. Adv Funct Mater 20:2857–2865CrossRefGoogle Scholar
  9. Liu ZF, Galli F, Waterreus WJ, Meulenbroek E, Koning RI, Lamers GEM, Olsthoorn RCL, Pannu N, Oosterkamp TH, Koster AJ, Dame RT, Abrahams JP (2012) Single-walled carbon nanotubes as scaffolds to concentrate DNA for the study of DNA–protein interactions. ChemPhysChem 13:1569–1575CrossRefGoogle Scholar
  10. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578CrossRefGoogle Scholar
  11. Phizicky EM, Fields S (1995) Protein–protein interactions—methods for detection and analysis. Microbiol Rev 59:94–123Google Scholar
  12. Rouviereyaniv J, Gros F (1975) Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc Natl Acad Sci USA 72:3428–3432CrossRefGoogle Scholar
  13. Sorel I, Pietrement O, Hamon L, Baconnais S, Le Cam E, Pastre D (2006) The EcoRI–DNA complex as a model for investigating protein–DNA interactions by atomic force microscopy. Biochemistry 45:14675–14682CrossRefGoogle Scholar
  14. Tao Y, Zhang W (2000) Recent developments in cryo-electron microscopy reconstruction of single particles. Curr Opin Struct Biol 10:616–622CrossRefGoogle Scholar
  15. Thomas M, Davis RW (1975) Studies on cleavage of bacteriophage-Lambda DNA with EcoRI restriction endonuclease. J Mol Biol 91:315–320CrossRefGoogle Scholar
  16. van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R, Pape T, Cohen D, Stark H, Schmidt R, Schatz M, Patwardhan A (2000) Single-particle electron cryo-microscopy: towards atomic resolution. Q Rev Biophys 33:307–369CrossRefGoogle Scholar
  17. Wagner K, Moolenaar G, van Noort J, Goosen N (2009) Single-molecule analysis reveals two separate DNA-binding domains in the Escherichia coli UvrA dimer. Nucl Acids Res 37:1962–1972CrossRefGoogle Scholar
  18. Zhou Z (2008) Towards atomic resolution structural determination by single-particle cryo-electron microscopy. Curr Opin Struct Biol 18:218–228Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Biophysical Structural Chemistry, Leiden Institute of ChemistryCell ObservatoryLeidenThe Netherlands
  2. 2.School of Pharmaceutical Engineering & Life ScienceChangzhou UniversityChangzhouChina
  3. 3.Biomedical Research CenterJiangnan Graphene Research InstituteChangzhouChina

Personalised recommendations