Gold nanoparticle aerosols for rodent inhalation and translocation studies

  • Winfried Möller
  • Neil Gibson
  • Marianne Geiser
  • Suman Pokhrel
  • Alexander Wenk
  • Shinji Takenaka
  • Otmar Schmid
  • Antonio Bulgheroni
  • Federica Simonelli
  • Jan Kozempel
  • Uwe Holzwarth
  • Christoph Wigge
  • Sylvie Eigeldinger-Berthou
  • Lutz Mädler
  • Wolfgang G. Kreyling
Research Paper

Abstract

The intensive use of nano-sized particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of nanoparticles (NP) with biological systems after various routes of exposure needs to be investigated using well-characterized NP. We report here on the generation of gold-NP (Au-NP) aerosols for inhalation studies with the spark ignition technique, and their characterization in terms of chemical composition, physical structure, morphology, and specific surface area, and on interaction with lung tissues and lung cells after 1 h inhalation by mice. The originally generated agglomerated Au-NP were converted into compact spherical Au-NP by thermal annealing at 600 °C, providing particles of similar mass, but different size and specific surface area. Since there are currently no translocation data available on inhaled Au-NP in the 10–50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation in rodents. For anticipated in vivo systemic translocation and dosimetry analyses, radiolabeled Au-NP were created by proton irradiating the gold electrodes of the spark generator, thus forming gamma ray emitting 195Au with 186 days half-life, allowing long-term biokinetic studies. The dissolution rate of 195Au from the NP was below detection limits. The highly concentrated, polydisperse Au-NP aerosol (1–2 × 107 NP/cm3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation and number concentration. After collection on filters particles can be re-suspended and used for instillation or ingestion studies.

Keywords

Gold nanoparticles Spark ignition Chain aggregate/agglomerate Proton irradiation Au-195 radiolabel X-ray diffraction 

References

  1. Alessandrini F, Semmler-Behnke M, Jakob T, Schulz H, Behrendt H, Kreyling W (2008) Total and regional deposition of ultrafine particles in a mouse model of allergic inflammation of the lung. Inhal Toxicol 20(6):585–593CrossRefGoogle Scholar
  2. Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7(6):753–763. doi:10.1517/17425241003777010 CrossRefGoogle Scholar
  3. Baron PA, Willeke K (2001) Aerosol measurement: principles, techniques, and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  4. Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12(5):679–684CrossRefGoogle Scholar
  5. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13(6):2287–2298CrossRefGoogle Scholar
  6. Doane TL, Burda C (2012) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 41(7):2885–2911. doi:10.1039/C2cs15260f CrossRefGoogle Scholar
  7. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61(9):727–728CrossRefGoogle Scholar
  8. Ferin J, Oberdörster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6(5):535–542CrossRefGoogle Scholar
  9. Fierz M, Kaegi R, Burtscher H (2007) Theoretical and experimental evaluation of a portable electrostatic TEM sampler. Aerosol Sci Technol 41(5):520–528CrossRefGoogle Scholar
  10. Firestone RB, Ekström LP (2004) WWW table of radioactive isotopes. LBNL Isotopes Project—LUNDS Universitet, vol 2.1. Lund University, Lund, SwedenGoogle Scholar
  11. Geiser M, Kreyling W (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7(1):2CrossRefGoogle Scholar
  12. Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Hof VI, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560CrossRefGoogle Scholar
  13. Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W (2008) The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 38(3):371–376CrossRefGoogle Scholar
  14. George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Madler L, Nel AE (2010) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1):15–29. doi:10.1021/nn901503q CrossRefGoogle Scholar
  15. Gibson PN, Özsan ME, Lincot D, Cowache P, Summa D (2000) Modelling of the structure of CdS thin films. Thin Solid Films 361–362:34–40. doi:10.1016/s0040-6090(99)00833-0 CrossRefGoogle Scholar
  16. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253CrossRefGoogle Scholar
  17. Holzwarth U, Bulgheroni A, Gibson N, Kozempel J, Cotogno G, Abbas K, Simonelli F, Cydzik I (2012) Radiolabelling of nanoparticles by proton irradiation: temperature control in nanoparticulate powder targets. J Nanopart Res 14(6):1–15. doi:10.1007/s11051-012-0880-y CrossRefGoogle Scholar
  18. Kreuter J (2004) Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotech 4(5):484–488CrossRefGoogle Scholar
  19. Kreyling W, Biswas P, Messing M, Gibson N, Geiser M, Wenk A, Sahu M, Deppert K, Cydzik I, Wigge C, Schmid O, Semmler-Behnke M (2011) Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies. J Nanopart Res 13(2):511–524. doi:10.1007/s11051-010-0081-5 CrossRefGoogle Scholar
  20. Kreyling WG, Semmler-Behnke M, Takenaka S, Möller W (2013) Differences in the biokinetics of inhaled nano-versus micrometer-sized particles. Accounts Chem Res (in press). doi:10.1021/ar300043r
  21. Kuehl PJ, Anderson TL, Candelaria G, Gershman B, Harlin K, Hesterman JY, Holmes T, Hoppin J, Lackas C, Norenberg JP, Yu H, McDonald JD (2012) Regional particle size dependent deposition of inhaled aerosols in rats and mice. Inhal Toxicol 24(1):27–35. doi:10.3109/08958378.2011.632787 CrossRefGoogle Scholar
  22. Liu Z, Kim SC, Wang J, Shin WG, Fissan H, Pui DYH (2012) Measurement of metal nanoparticle agglomerates generated by spark discharge using the universal nanoparticle analyzer (UNPA). Aerosol Sci Technol 46(3):333–346. doi:10.1080/02786826.2011.626002 CrossRefGoogle Scholar
  23. Ma-Hock L, Gamer AO, Landsiedel R, Leibold E, Frechen T, Sens B, Linsenbuehler M, van Ravenzwaay B (2007) Generation and characterization of test atmospheres with nanomaterials. Inhal Toxicol 19(10):833–848CrossRefGoogle Scholar
  24. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444(7117):267–269CrossRefGoogle Scholar
  25. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330CrossRefGoogle Scholar
  26. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefGoogle Scholar
  27. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557CrossRefGoogle Scholar
  28. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  29. Papasani MR, Wang G, Hill RA (2012) Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomedicine (Lond). doi:10.1016/j.nano.2012.01.008 Google Scholar
  30. Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen L, Geiser M, Reed W, Rothen-Rutishauser B, Schurch S, Schulz H (2006) Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 3(1):13CrossRefGoogle Scholar
  31. Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew ME, Castranova V (2008) A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2(3):144–154CrossRefGoogle Scholar
  32. Rand D, Ortiz V, Liu Y, Derdak Z, Wands JR, Tatíček M, Rose-Petruck C (2011) Nanomaterials for X-ray imaging: gold nanoparticle enhancement of X-ray scatter imaging of hepatocellular carcinoma. Nano Lett 11(7):2678–2683. doi:10.1021/nl200858y CrossRefGoogle Scholar
  33. Seaton A, Donaldson K (2005) Nanoscience, nanotoxicology, and the need to think small. Lancet 365(9463):923–924CrossRefGoogle Scholar
  34. Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4(12):2108–2111. doi:10.1002/smll.200800922 CrossRefGoogle Scholar
  35. Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H (2006) Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114(3):328–333CrossRefGoogle Scholar
  36. Takenaka S, Karg E, Kreyling WG, Lentner B, Möller W, Behnke-Semmler M, Jennen L, Walch A, Michalke B, Schramel P, Heyder J, Schulz H (2006) Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 18(10):733–740CrossRefGoogle Scholar
  37. Takenaka S, Möller W, Semmler-Behnke M, Karg E, Wenk A, Schmid O, Stoeger T, Jennen L, Aichler M, Walch A, Pokhrel S, Mädler L, Eickelberg O, Kreyling WG (2012) Efficient internalization and intracellular translocation of inhaled gold nanoparticles in rat alveolar macrophages. Nanomedicine (Lond) 7:855–865. doi:10.2217/nnm.11.152 CrossRefGoogle Scholar
  38. Wilson BJ (1966) The radiochemical manual, 2nd edn. Radiochemical Centre, AmershamGoogle Scholar
  39. Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao Y-P, Wang M, Li L, Rallo R, Damoiseaux R, Telesca D, Mädler L, Cohen Y, Zink JI, Nel AE (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368. doi:10.1021/nn3010087 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Winfried Möller
    • 1
  • Neil Gibson
    • 2
  • Marianne Geiser
    • 3
  • Suman Pokhrel
    • 4
  • Alexander Wenk
    • 1
  • Shinji Takenaka
    • 1
  • Otmar Schmid
    • 1
  • Antonio Bulgheroni
    • 2
  • Federica Simonelli
    • 2
  • Jan Kozempel
    • 2
  • Uwe Holzwarth
    • 2
  • Christoph Wigge
    • 3
  • Sylvie Eigeldinger-Berthou
    • 3
  • Lutz Mädler
    • 4
  • Wolfgang G. Kreyling
    • 1
  1. 1.Comprehensive Pneumology Center (CPC)Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum München—German Research Center for Environmental HealthNeuherberg, MunichGermany
  2. 2.Institute for Health and Consumer Protection, Joint Research Centre of the European CommissionIspraItaly
  3. 3.Institute of AnatomyUniversity of BernBern 9Switzerland
  4. 4.Department of Production EngineeringFoundation Institute of Materials Science (IWT), University of BremenBremenGermany

Personalised recommendations