Semiconductor nanocrystals dispersed in imidazolium-based ionic liquids: a spectroscopic and morphological investigation

  • Annamaria Panniello
  • Enrico Binetti
  • Chiara Ingrosso
  • M. Lucia Curri
  • Angela Agostiano
  • Raffaele Tommasi
  • Marinella StriccoliEmail author
Research Paper


A growing interest is devoted to the study of imidazolium-based ionic liquids as innovative materials to combine with functional elements for advanced technological applications. Materials based on semiconductor and oxide nanocrystals in ionic liquids can be promising for their integration in lithium batteries, as well as in innovative solar cells. Although the physical chemical properties and the solvation dynamics of bare ionic liquids have been extensively studied, their combination with colloidal nanocrystals still remains almost unexplored. Here, the optical properties of organic-capped luminescent cadmium selenide nanocrystals coated by a shell of zinc sulfide (CdSe(ZnS)) dispersed in 1,3-dialkyl imidazolium ionic liquids have been investigated, also in dependence of the alkyl chain length on the imidazolium ring and of the anion nature, by using both time-integrated and time-resolved optical spectroscopy. The observed variations in decay profiles of the ionic liquid in presence of colloidal nanocrystals suggest that the dispersion of the nanostructures induces modifications in the ionic liquid structural order. Finally, atomic force microscopy analysis has provided insight into the topography of the investigated dispersions deposited as film, confirming the organization of the ionic liquids in super-structures, also upon nanocrystal incorporation.


Colloidal nanocrystals Ionic liquids Luminescence Optical spectroscopy Time-resolved emission spectroscopy 



This study has been financially supported by the EU 7th FP ORION project (CP-IP 229036-2). The authors gratefully thank Solvionic (France) for supplying the ILs.

Supplementary material

11051_2013_1567_MOESM1_ESM.docx (466 kb)
Supplementary material 1 (DOCX 466 kb)


  1. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43(38):4988–4992. doi: 10.1002/anie.200460091 CrossRefGoogle Scholar
  2. Antony JH, Mertens D, Dölle A, Wasserscheid P, Carper WR (2003) Molecular reorientational dynamics of the neat ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate by measurement of 13C nuclear magnetic relaxation data. ChemPhysChem 4(6):588–594. doi: 10.1002/cphc.200200603 CrossRefGoogle Scholar
  3. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8(8):621–629. doi: 10.1038/nmat2448 CrossRefGoogle Scholar
  4. Arzhantsev S, Jin H, Ito N, Maroncelli M (2006) Observing the complete solvation response of DCS in imidazolium ionic liquids, from the femtosecond to nanosecond regimes. Chem Phys Lett 417(4–6):524–529. doi: 10.1016/j.cplett.2005.10.062 CrossRefGoogle Scholar
  5. Bai Y, Cao Y, Zhang J, Wang M, Li R, Wang P, Zakeeruddin SM, Gratzel M (2008) High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat Mater 7(8):626–630. doi: 10.1038/nmat2224 CrossRefGoogle Scholar
  6. Bennett MD, Leo DJ (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens Actuators, A 115(1):79–90. doi: 10.1016/j.sna.2004.03.043 CrossRefGoogle Scholar
  7. Binetti E, Panniello A, Triggiani L, Tommasi R, Agostiano A, Curri ML, Striccoli M (2012) Spectroscopic study on imidazolium based ionic liquids: effect of alkyl chain length and anion. J Phys Chem B 116(11):3512–3518. doi: 10.1021/jp300517h CrossRefGoogle Scholar
  8. Blanco D, Battez A, Viesca J, González R, Fernández-González A (2011) Lubrication of CrN coating with ethyl-dimethyl-2-methoxyethylammonium tris(pentafluoroethyl)trifluorophosphate ionic liquid as additive to PAO 6. Tribol Lett 41(1):295–302. doi: 10.1007/s11249-010-9714-1 CrossRefGoogle Scholar
  9. Burrell AK, Sesto RED, Baker SN, McCleskey TM, Baker GA (2007) The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem 9(5):449–454. doi: 10.1039/b615950h CrossRefGoogle Scholar
  10. Buzzeo MC, Hardacre C, Compton RG (2004) Use of room temperature ionic liquids in gas sensor design. Anal Chem 76(15):4583–4588. doi: 10.1021/ac040042w CrossRefGoogle Scholar
  11. Carmichael AJ, Hardacre C, Holbrey JD, Nieuwenhuyzen M, Seddon KR (2001) Molecular layering and local order in thin films of 1-alkyl-3-methylimidazolium ionic liquids using X-ray reflectivity. Mol Phys 99(10):795–800. doi: 10.1080/00268970010012301 CrossRefGoogle Scholar
  12. Castner JEW, Wishart JF (2010) Spotlight on ionic liquids. J Chem Phys 132(12):120901–120909. doi: 10.1063/1.3373178 CrossRefGoogle Scholar
  13. Castner EW, Margulis CJ, Maroncelli M, Wishart JF (2011) Ionic liquids: structure and photochemical reactions. Annu Rev Phys Chem 62(1):85–105. doi: 10.1146/annurev-physchem-032210-103421 CrossRefGoogle Scholar
  14. Chen S, Wu G, Sha M, Huang S (2007) Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J Am Chem Soc 129(9):2416–2417. doi: 10.1021/ja067972c CrossRefGoogle Scholar
  15. Chen X-W, Liu J-W, Wang J-H (2011) A highly fluorescent hydrophilic ionic liquid as a potential probe for the sensing of biomacromolecules. J Phys Chem B 115(6):1524–1530. doi: 10.1021/jp109121h CrossRefGoogle Scholar
  16. Chiappe C (2007) Nanostructural organization of ionic liquids: theoretical and experimental evidences of the presence of well defined local structures in ionic liquids. Monatsh Chem 138(11):1035–1043. doi: 10.1007/s00706-007-0726-y CrossRefGoogle Scholar
  17. Choi H, Baik C, Kang SO, Ko J, Kang M-S, Nazeeruddin MK, Grätzel M (2008) Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angew Chem Int Ed 47(2):327–330. doi: 10.1002/anie.200703852 CrossRefGoogle Scholar
  18. Chou S-L, Wang J-Z, Sun J-Z, Wexler D, Forsyth M, Liu H-K, MacFarlane DR, Dou S-X (2008) High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chem Mater 20(22):7044–7051. doi: 10.1021/cm801468q CrossRefGoogle Scholar
  19. Coasne B, Viau L, Vioux A (2011) Loading-controlled stiffening in nanoconfined ionic liquids. J Phys Chem Lett 2(10):1150–1154. doi: 10.1021/jz200411a CrossRefGoogle Scholar
  20. Consorti CS, Suarez PAZ, de Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, da Silva LHM, Dupont J (2005) Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 109(10):4341–4349. doi: 10.1021/jp0452709 CrossRefGoogle Scholar
  21. Deshmukh RR, Rajagopal R, Srinivasan KV (2001) Ultrasound promoted C–C bond formation: heck reaction at ambient conditions in room temperature ionic liquids. Chem Commun 17:1544–1545. doi: 10.1039/B104532F CrossRefGoogle Scholar
  22. Ding J, Zhou D, Spinks G, Wallace G, Forsyth S, Forsyth M, MacFarlane D (2003) Use of ionic liquids as electrolytes in electromechanical actuator systems based on inherently conducting polymers. Chem Mater 15(12):2392–2398. doi: 10.1021/cm020918k CrossRefGoogle Scholar
  23. Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350. doi: 10.1590/S0103-50532004000300002 CrossRefGoogle Scholar
  24. Dupont J, Suarez PAZ (2006) Physico-chemical processes in imidazolium ionic liquids. Phys Chem Chem Phys 8(21):2441–2452. doi: 10.1039/B602046A CrossRefGoogle Scholar
  25. Dupont J, de Souza RF, Suarez PAZ (2002a) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102(10):3667–3692. doi: 10.1021/cr010338r CrossRefGoogle Scholar
  26. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002b) Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124(16):4228–4229. doi: 10.1021/ja025818u CrossRefGoogle Scholar
  27. Earle MJ, Gordon CM, Plechkova NV, Seddon KR, Welton T (2006) Decolorization of ionic liquids for spectroscopy. Anal Chem 79(2):758–764. doi: 10.1021/ac061481t CrossRefGoogle Scholar
  28. Endres F, El Abedin SZ (2002) Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid. Chem Commun 8:892–893. doi: 10.1039/B110716J CrossRefGoogle Scholar
  29. Endres F, Zein El Abedin S (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8(18):2101–2116. doi: 10.1039/B600519P CrossRefGoogle Scholar
  30. Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, Dupont J (2003) The use of imidazolium ionic liquids for the formation and stabilization of Ir0 and Rh0 nanoparticles: efficient catalysts for the hydrogenation of arenes. Chem Eur J 9(14):3263–3269. doi: 10.1002/chem.200304753 CrossRefGoogle Scholar
  31. Fox DM, Awad WH, Gilman JW, Maupin PH, De Long HC, Trulove PC (2003) Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts. Green Chem 5(6):724–727. doi: 10.1039/B308444B CrossRefGoogle Scholar
  32. Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based Bucky gel. Angew Chem Int Ed 44(16):2410–2413. doi: 10.1002/anie.200462318 CrossRefGoogle Scholar
  33. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51(26):5567–5580. doi: 10.1016/j.electacta.2006.03.016 CrossRefGoogle Scholar
  34. Gordon CM (2001) New developments in catalysis using ionic liquids. Appl Catal A 222(1–2):101–117. doi: 10.1016/S0926-860X(01)00834-1 Google Scholar
  35. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A-Chem 164(1–3):3–14. doi: 10.1016/j.jphotochem.2004.02.023 CrossRefGoogle Scholar
  36. Guerrero-Sanchez C, Lara-Ceniceros T, Jimenez-Regalado E, Raşa M, Schubert US (2007) Magnetorheological fluids based on ionic liquids. Adv Mater 19(13):1740–1747. doi: 10.1002/adma.200700302 CrossRefGoogle Scholar
  37. Han X, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40(11):1079–1086. doi: 10.1021/ar700044y CrossRefGoogle Scholar
  38. Hu Z, Margulis CJ (2006) Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. Proc Natl Acad Sci USA 103(4):831–836. doi: 10.1073/pnas.0507364103 CrossRefGoogle Scholar
  39. Israelachvili JN (ed) (1992) In: Intermolecular and surface forces. 2nd edn. Academic Press, New York. ISBN 978-0-12-391927-4Google Scholar
  40. Jin H, Li X, Maroncelli M (2007) Heterogeneous solute dynamics in room temperature ionic liquids. J Phys Chem B 111(48):13473–13478. doi: 10.1021/jp077226+ CrossRefGoogle Scholar
  41. Jovanovski V, González-Pedro V, Giménez S, Azaceta E, Cabañero G, Grande H, Tena-Zaera R, Mora-Seró I, Bisquert J (2011) A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells. J Am Chem Soc 133(50):20156–20159. doi: 10.1021/ja2096865 CrossRefGoogle Scholar
  42. Karmakar R, Samanta A (2002a) Solvation dynamics of coumarin-153 in a room-temperature ionic liquid. J Phys Chem A 106(18):4447–4452. doi: 10.1021/jp011498+ CrossRefGoogle Scholar
  43. Karmakar R, Samanta A (2002b) Steady-state and time-resolved fluorescence behavior of C153 and PRODAN in room-temperature ionic liquids. J Phys Chem A 106(28):6670–6675. doi: 10.1021/jp0143591 CrossRefGoogle Scholar
  44. Katoh R, Hara M, Tsuzuki S (2008) Ion pair formation in [bmim]I ionic liquids. J Phys Chem B 112(48):15426–15430. doi: 10.1021/jp806578h CrossRefGoogle Scholar
  45. Khare V, Kraupner A, Mantion A, Jeličić A, Thünemann AF, Giordano C, Taubert A (2010) Stable iron carbide nanoparticle dispersions in [Emim][SCN] and [Emim][N(CN)2] ionic liquids. Langmuir 26(13):10600–10605. doi: 10.1021/la100775m CrossRefGoogle Scholar
  46. Lee C-M, Jeong H-J, Lim ST, Sohn M-H, Kim DW (2010) Synthesis of iron oxide nanoparticles with control over shape using imidazolium-based ionic liquids. ACS Appl Mater Interfaces 2(3):756–759. doi: 10.1021/am900769x CrossRefGoogle Scholar
  47. Liu J-F, Jiang G-B, Jönsson JÅ (2005) Application of ionic liquids in analytical chemistry. Trends Anal Chem 24(1):20–27. doi: 10.1016/j.trac.2004.09.005 CrossRefGoogle Scholar
  48. Liu Y, Zhang Y, Wu G, Hu J (2006) Coexistence of liquid and solid phases of Bmim-PF6 ionic liquid on mica surfaces at room temperature. J Am Chem Soc 128(23):7456–7457. doi: 10.1021/ja062685u CrossRefGoogle Scholar
  49. Lunstroot K, Baeten L, Nockemann P, Martens J, Verlooy P, Ye X, Görller-Walrand C, Binnemans K, Driesen K (2009) Luminescence of LaF3:ln3+ nanocrystal dispersions in ionic liquids. J Phys Chem C 113(31):13532–13538. doi: 10.1021/jp9015118 CrossRefGoogle Scholar
  50. Maase M (2008) Industrial applications of ionic liquids. In: Ionic liquids in synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi: 10.1002/9783527621194.ch9
  51. MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun J, Annat G, Neil W, Izgorodina EI (2007) Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc Chem Res 40(11):1165–1173. doi: 10.1021/ar7000952 CrossRefGoogle Scholar
  52. Mandal PK, Sarkar M, Samanta A (2004) Excitation-wavelength-dependent fluorescence behavior of some dipolar molecules in room-temperature ionic liquids. J Phys Chem A 108(42):9048–9053. doi: 10.1021/jp047250c CrossRefGoogle Scholar
  53. Mandal PK, Paul A, Samanta A (2006) Excitation wavelength dependent fluorescence behavior of the room temperature ionic liquids and dissolved dipolar solutes. J Photochem Photobiol A-Chem 182(2):113–120. doi: 10.1016/j.jphotochem.2006.01.003 CrossRefGoogle Scholar
  54. Mekis I, Talapin DV, Kornowski A, Haase M, Weller H (2003) One-pot synthesis of highly luminescent CdSe/CdS core–shell nanocrystals via organometallic and “greener” chemical approaches. J Phys Chem B 107(30):7454–7462. doi: 10.1021/jp0278364 CrossRefGoogle Scholar
  55. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Res 30(1):545–610. doi: 10.1146/annurev.matsci.30.1.545 CrossRefGoogle Scholar
  56. Nakashima T, Nonoguchi Y, Kawai T (2008) Ionic liquid-based luminescent composite materials. Polym Adv Technol 19(10):1401–1405. doi: 10.1002/pat.1202 CrossRefGoogle Scholar
  57. Néouze M-A, Bideau JL, Gaveau P, Bellayer S, Vioux A (2006) Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chem Mater 18(17):3931–3936. doi: 10.1021/cm060656c CrossRefGoogle Scholar
  58. Nockemann P, Binnemans K, Driesen K (2005) Purification of imidazolium ionic liquids for spectroscopic applications. Chem Phys Lett 415(1–3):131–136. doi: 10.1016/j.cplett.2005.08.128 CrossRefGoogle Scholar
  59. Norris DJ (2010) Electronic structure in semiconductor nanocrystals: optical experiments. In: Klimov V (ed) Nanocrystal quantum dots. 2nd edn. pp 64–96. ISBN 9781420079265Google Scholar
  60. O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic Press, London. ISBN 0125241402 9780125241403Google Scholar
  61. Palacio M, Bhushan B (2010) A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol Lett 40(2):247–268. doi: 10.1007/s11249-010-9671-8 CrossRefGoogle Scholar
  62. Paul A, Samanta A (2006) Optical absorption and fluorescence studies on imidazolium ionic liquids comprising the bis(trifluoromethanesulphonyl)imide anion. J Chem Sci 118(4):335–340. doi: 10.1007/bf02708527 CrossRefGoogle Scholar
  63. Paul A, Mandal PK, Samanta A (2005a) How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6]. Chem Phys Lett 402(4–6):375–379. doi: 10.1016/j.cplett.2004.12.060 CrossRefGoogle Scholar
  64. Paul A, Mandal PK, Samanta A (2005b) On the optical properties of the imidazolium ionic liquids. J Phys Chem B 109(18):9148–9153. doi: 10.1021/jp0503967 CrossRefGoogle Scholar
  65. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150. doi: 10.1039/B006677J CrossRefGoogle Scholar
  66. Rogers RD, Seddon KR (2003) Ionic liquids–solvents of the future? Science 302(5646):792–793. doi: 10.1126/science.1090313 CrossRefGoogle Scholar
  67. Sakaebe H, Matsumoto H, Tatsumi K (2007) Application of room temperature ionic liquids to Li batteries. Electrochim Acta 53(3):1048–1054. doi: 10.1016/j.electacta.2007.02.054 CrossRefGoogle Scholar
  68. Samanta A (2006) Dynamic stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. J Phys Chem B 110(28):13704–13716. doi: 10.1021/jp060441q CrossRefGoogle Scholar
  69. Samanta A (2010) Solvation dynamics in ionic liquids: what we have learned from the dynamic fluorescence Stokes shift studies. J Phys Chem Lett 1(10):1557–1562. doi: 10.1021/jz100273b CrossRefGoogle Scholar
  70. Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2(6):363–365. doi: 10.1038/nmat907 CrossRefGoogle Scholar
  71. Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Kihira N, Watanabe M, Terada N (2006) Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J Phys Chem B 110(21):10228–10230. doi: 10.1021/jp0620872 CrossRefGoogle Scholar
  72. Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T (2009) Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 8(6):494–499. doi: 10.1038/nmat2459 CrossRefGoogle Scholar
  73. Shen Y, Zhang Y, Han D, Wang Z, Kuehner D, Niu L (2009) Preparation of colorless ionic liquids “on water” for spectroscopy. Talanta 78(3):805–808. doi: 10.1016/j.talanta.2008.12.056 CrossRefGoogle Scholar
  74. Shiflett MB, Yokozeki A (2007) Hydrogen substitution effect on the solubility of per halogenated compounds in ionic liquid [bmim][PF6]. Fluid Phase Equilib 259(2):210–217. doi: 10.1016/j.fluid.2007.07.035 CrossRefGoogle Scholar
  75. Singh T, Kumar A (2008) Fluorescence behavior and specific interactions of an ionic liquid in ethylene glycol derivatives. J Phys Chem B 112(13):4079–4086. doi: 10.1021/jp711711z CrossRefGoogle Scholar
  76. Stark A, Behrend P, Braun O, Muller A, Ranke J, Ondruschka B, Jastorff B (2008) Purity specification methods for ionic liquids. Green Chem 10(11):1152–1161. doi: 10.1039/B808532C CrossRefGoogle Scholar
  77. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2009) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110(1):389–458. doi: 10.1021/cr900137k CrossRefGoogle Scholar
  78. Tang F, Wu K, Ding L, Yuan J, Liu Q, Nie L, Yao S (2008) Purification of undiluted ionic liquids from trace-colored impurities for spectroscopy by octadecylsilyl solid-phase extraction. Sep Purif Technol 60(3):245–250. doi: 10.1016/j.seppur.2007.08.018 CrossRefGoogle Scholar
  79. Taubert A (2004) CuCl nanoplatelets from an ionic liquid–crystal precursor. Angew Chem Int Ed 43(40):5380–5382. doi: 10.1002/anie.200460846 CrossRefGoogle Scholar
  80. Torimoto T, Tsuda T, Okazaki K-I, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22(11):1196–1221. doi: 10.1002/adma.200902184 CrossRefGoogle Scholar
  81. Wang Y, Voth GA (2006) Tail aggregation and domain diffusion in ionic liquids. J Phys Chem B 110(37):18601–18608. doi: 10.1021/jp063199w CrossRefGoogle Scholar
  82. Wang J, Wang H, Zhang S, Zhang H, Zhao Y (2007a) Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [Cnmim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions. J Phys Chem B 111(22):6181–6188. doi: 10.1021/jp068798h CrossRefGoogle Scholar
  83. Wang Y, Maksimuk S, Shen R, Yang H (2007b) Synthesis of iron oxide nanoparticles using a freshly-made or recycled imidazolium-based ionic liquid. Green Chem 9(10):1051–1056. doi: 10.1039/B618933D CrossRefGoogle Scholar
  84. Ward MD (2001) Bulk crystals to surfaces: combining X-ray diffraction and atomic force microscopy to probe the structure and formation of crystal interfaces. Chem Rev 101(6):1697–1726. doi: 10.1021/cr000020j CrossRefGoogle Scholar
  85. Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607(2):126–135. doi: 10.1016/j.aca.2007.12.011 CrossRefGoogle Scholar
  86. Weingärtner H (2008) Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed 47(4):654–670. doi: 10.1002/anie.200604951 CrossRefGoogle Scholar
  87. Wishart JF, Castner JEW (2007) The physical chemistry of ionic liquids. J Phys Chem B 111(18):4639–4640. doi: 10.1021/jp072262u CrossRefGoogle Scholar
  88. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860. doi: 10.1021/cm034081k CrossRefGoogle Scholar
  89. Zhang ZC (2006) Catalysis in ionic liquids. In: Bruce CG, Helmut K (eds) Advances in catalysis, vol 49. Academic Press, New York, pp 153–237. doi: 10.1016/S0360-0564(05)49003-3 CrossRefGoogle Scholar
  90. Zhang J, Zhang Q, Shi F, Zhang S, Qiao B, Liu L, Ma Y, Deng Y (2008) Greatly enhanced fluorescence of dicyanamide anion based ionic liquids confined into mesoporous silica gel. Chem Phys Lett 461(4–6):229–234. doi: 10.1016/j.cplett.2008.07.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Annamaria Panniello
    • 1
  • Enrico Binetti
    • 1
  • Chiara Ingrosso
    • 1
  • M. Lucia Curri
    • 1
  • Angela Agostiano
    • 1
    • 2
  • Raffaele Tommasi
    • 1
    • 3
  • Marinella Striccoli
    • 1
    Email author
  1. 1.IPCF Bari DivisionC.N.RBariItaly
  2. 2.Chemistry DepartmentUniversity of Bari “Aldo Moro”BariItaly
  3. 3.Department of Basic Medical SciencesNeuroscience and Sense Organs, University of Bari “Aldo Moro”BariItaly

Personalised recommendations