Spectroscopic analysis of the riboflavin—serum albumins interaction on silver nanoparticles

  • Mariana Voicescu
  • Daniel G. Angelescu
  • Sorana Ionescu
  • Valentin S. Teodorescu
Research Paper


Spectrophotometric behavior of riboflavin (RF) adsorbed on silver nanoparticles as well as its interaction with two serum albumins, BSA and HSA, respectively, has been evidenced. The time evolution of the plasmonic features of the complexes formed by RF/BSA/HSA and Ag(0) nanoparticles having an average diameter of 10.0 ± 2.0 nm have been investigated by UV–Vis absorption spectroscopy. Using steady-state and time-resolved fluorescence spectroscopy, the structure, stability, and dynamics of the serum albumins have been studied. The efficiency of energy transfer process between RF and serum albumins on silver nanoparticles has been estimated. A reaction mechanism of RF with silver nanoparticles is also proposed and the results are discussed with relevance to the involvement of the silver nanoparticles to the redox process of RF and to the RF–serum albumins interaction into a silver nanoparticles complex.


Riboflavin Silver nanoparticles Fluorescence spectroscopy Serum albumins 



This study was a part of the research project proposal, UEFISCDI, project number PN-II-RU-TE-2012-3-0055. This study was also performed in the frame of the Romanian Academy programme and II; 8 theme of the INFRANANOCHEM project.


  1. Angelescu DG, Vasilescu M, Somoghi R et al (2010) Kinetics and optical properties of the silver nanoparticles in aqueous L64 block copolymer solutions. Colloid Surfaces A 366:155–162CrossRefGoogle Scholar
  2. Bi S, Ding L, Tian Y et al (2004) Investigation of the interaction between flavonoids and human serum albumin. J Mol Struct 703:37–45CrossRefGoogle Scholar
  3. Bi S, Song D, Kan Y et al (2005) Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins. Spectrochim Acta A 62:203–212CrossRefGoogle Scholar
  4. Bolotin PA, Baranovsky SF, Chernyshev DN et al (2007) Spectrophotometric study of the solution interactions between riboflavin, sodium salicylate and caffeine. Int J Phys Sci 2:068–072Google Scholar
  5. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203CrossRefGoogle Scholar
  6. Codoner A, Medina P, Ortiz C et al (1993) Spectroscopic study of molecular associations between and some (dihydro)beta-carboline derivatives. Spectrochim Acta 49A:321–327Google Scholar
  7. Datta S, Mukhopadhyay C, Bhattacharya S et al (2006) Stability and conformation of the complexes of riboflavin with aromatic hydroxy compounds in an aqueous medium. Spectrochim Acta 64A:116–126Google Scholar
  8. De-Llanos R, Sanchez-Cortes S, Domingo C et al (2011) Surface Plasmon effects on the binding of antitumoral drug emodin to bovine serum albumin. J Phys Chem C 115:12419–12429CrossRefGoogle Scholar
  9. Dinoiu V, Voicescu M, Lungu L et al (2011) Spectroscopic study on the riboflavin–plant extracts interaction. Rev Chim 62:1111–1114Google Scholar
  10. Edwards AM, Silva E, Jofre B et al (1994) Visible light effects on tumoral cells in a culture medium enriched with tryptophan and riboflavin. Photochem Photobiol 24:179–186CrossRefGoogle Scholar
  11. Evstigneev MP, Evstigneev VP, Davies DB et al (2006a) NMR investigation of the effect of caffeine on the hetero-association of an anticancer drug with a vitamin. Chem Phys Lett 432:248–251CrossRefGoogle Scholar
  12. Evstigneev MP, Evstigneev VP, Hernandez Santiago AA et al (2006b) Effect of a mixture of caffeine and nicotinamide on the solubility of vitamin (B-2) in aqueous solution. Eur J Pharm Sci 28:59–66CrossRefGoogle Scholar
  13. Förster T, Sinanoglu O (1996) Modern quantum chemistry. Academic Press, New YorkGoogle Scholar
  14. Gaidau C, Petica A, Plavan V et al (2009) Investigation on silver nanoparticles interaction with collagen based materials. J Optoelectron Adv Mater 11:845–851Google Scholar
  15. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215CrossRefGoogle Scholar
  16. Heelis PF (1982) The photophysical and photochemical properties of flavins (isoalloxazines). Chem Soc Rev 11:15–39CrossRefGoogle Scholar
  17. Hermoso JA, Mayoral T, Faro M et al (2002) Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin–NADP(+) reductase complexed with NADP(+). J Mol Biol 319:1133–1142CrossRefGoogle Scholar
  18. Hongwei Z, Ge Min, Zhaoxia Z et al (2006) Spectroscopic studies on the interaction between riboflavin and albumins. Spectrochim Acta, Part A 65:811–817CrossRefGoogle Scholar
  19. Hu YJ, Liu Y, Zhang LX (2005) Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct 750:174–178CrossRefGoogle Scholar
  20. Il’ichev YV, Perry JL, Simon JD (2002) Interaction of ochratoxin A with human serum albumin. Preferential binding of dianion and pH effects. J Phys Chem B 106:452–459CrossRefGoogle Scholar
  21. Ionita MA, Ion RM, Carstocea B (2003) Photochemical and photodynamic properties of Vitamin B2-riboflavin in liposomes. Oftalmologia 58:29–34Google Scholar
  22. Johansson JS, Eckenhoff RG, Dutton PL (1995) Binding of halothane to serum albumin demonstrated using tryptophan fluorescence. Anesthesiology 83:316–324CrossRefGoogle Scholar
  23. Kato Y, Uchida K, Kawakishi S (1994) Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible role of tyrosine modification. Photochem Photobiol 59:343–349CrossRefGoogle Scholar
  24. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53Google Scholar
  25. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New YorkCrossRefGoogle Scholar
  26. Levin AD, Aseichev AV, Azizova OA et al (2010) Modification of resonance light scattering spectra of silver nanoparticles due to their interactions with protein molecules. Colloidal J 72:23–30CrossRefGoogle Scholar
  27. Liu Y, Liu X, Wang X (2011) Biomimetic synthesis of gelatin polypeptide-assisted noble-metal nanoparticles and their interaction study. Nanoscale Res Lett 6:1–11Google Scholar
  28. Louie TM, Yang H, Karnchanaphanurach P et al (2002) FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H: flavin oxidoreductase. J Biol Chem 277:39450–39455CrossRefGoogle Scholar
  29. Miura R (2001) Versatility and specificity in flavoenzymes: control mechanisms of flavin reactivity. Chem Rec 1:183–194CrossRefGoogle Scholar
  30. Müller WE, Wollert U (1979) Human serum albumin as a ‘silent receptor’ for drugs and endogenous substances. Pharmacology 19:59–67CrossRefGoogle Scholar
  31. Munoz MA, Carmona C, Hidalgo J et al (1995) Molecular associations of flavins with betacarbolines and related indoles. Bioorg Med Chem 3:41–47CrossRefGoogle Scholar
  32. Prashant KJ, Huang X, El-Sayed IH (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc Chem Res 41:1578–1586CrossRefGoogle Scholar
  33. Ramu A, Mehta MM, Liu J et al (2000) The riboflavin mediated photooxidation of doxorubicin. Cancer Chemother Pharmacol 46:449–458CrossRefGoogle Scholar
  34. Ray K, Chowdhury MH, Szmacinski H et al (2008) Metal-enhanced intrinsic fluorescence of proteins on silver nanostructured surfaces towards label-free detection. J Phys Chem C 112:17957–17963CrossRefGoogle Scholar
  35. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol Rev 23:1–6Google Scholar
  36. SeH Jung, Choi SJ, Kim HJ et al (2006) Molecular characteristics of bovine serum albumin–dextran conjugates. Biosci Biotechnol Biochem 70:2064–2070CrossRefGoogle Scholar
  37. Silva E, Ugarte P, Andrade A et al (1994) Riboflavin-sensitized photo-processes of tryptophan. J Photochem Photobiol B 23:43–48CrossRefGoogle Scholar
  38. Silva D, Cortez CM, Louro SRW (2004) Chlorpromazine interactions to sera albumins: a study by the quenching of fluorescence. Spectrochim Acta A 60:1215–1223CrossRefGoogle Scholar
  39. Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061Google Scholar
  40. Sugio S, Kashima A, Mochizuki S et al (1999) Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng 12:439–446CrossRefGoogle Scholar
  41. Sun M, Moore TA, Song PS (1972) Molecular luminescence studies of flavins. I. The excited states of flavins. J Am Chem Soc 94:1730–1740CrossRefGoogle Scholar
  42. Szmacinski H, Ray K, Lakowicz JR (2009) Metal-enhanced fluorescence of tryptophan residues in proteins: application towards label-free bioassays. Anal Biochem 385:364–538CrossRefGoogle Scholar
  43. Veselkov AN, Evstigneev MP, Rozvadovskaya AO et al (2005) 1H NMR analysis of the complex formation of aromatic molecules of antibiotic and vitamin in aqueous solution: heteroassociation of actinomycin D and flavin mononucleotide. Biophysics 50:20–27Google Scholar
  44. Voicescu M, Meghea A (2004) The effect of cyclodextrins on antioxidative activity of riboflavin (Vitamin B2). UPB Sci Bull Series B 66:19–24Google Scholar
  45. Voicescu M, Ionita G, Constantinescu T et al (2006) The oxidative activity of riboflavin studied by luminescence methods: the effect of cysteine, arginine, lysine and histidine aminoacids. Rev Roum Chim 51:683–690Google Scholar
  46. Voicescu M, Ionita G, Beteringhe A et al (2008) The antioxidative activity of riboflavin in the presence of antipyrin. Spectroscopic studies. J Fluorescence 18:953–959CrossRefGoogle Scholar
  47. Voicescu M, Ionescu S, Angelescu D (2012) Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles. J Nanopart Res. doi: 10.1007/s11051-012-1174-0 Google Scholar
  48. Wang F, Huang W, Dai Z (2008) Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin. J Mol Struct 875:509–514CrossRefGoogle Scholar
  49. Yamasaki K, Maruyama T, Hansen UK (1996) Characterization of site I on human serum albumin: concept about the structure of a drug binding site. Biochim Biophys Acta 1295:147–157CrossRefGoogle Scholar
  50. Yang H, Luo G, Pallop K et al (2003) Protein conformational dymanics probed by single - molecule electron transfer. Science 302:262–266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mariana Voicescu
    • 1
  • Daniel G. Angelescu
    • 1
  • Sorana Ionescu
    • 2
  • Valentin S. Teodorescu
    • 3
  1. 1.Romanian AcademyInstitute of Physical Chemistry “Ilie Murgulescu”BucharestRomania
  2. 2.Department of Physical ChemistryUniversity of BucharestBucharestRomania
  3. 3.Institute of Atomic Physics, National Institute of Materials PhysicsMagureleRomania

Personalised recommendations