Advertisement

A comparison of chemical structures of soot precursor nanoparticles from liquid fuel combustion in flames and engine

  • Bireswar Paul
  • Amitava DattaEmail author
  • Aparna Datta
  • Abhijit Saha
Research Paper

Abstract

A comparative study of the chemical structures of soot precursor nanoparticles from the liquid fuel flame and engine exhaust has been performed in this work to establish an association between the particles from both the sources. Different ex-situ measurement techniques have been used to characterize the nanoparticles in samples collected from the laboratory petrol/air and iso-octane/air flames, as well as from a gasoline engine. The TEM images of the sampled material along with the EDS spectra corroborate the existence of carbonaceous nanoparticles. The nature of the UV absorption and fluorescence spectra of the samples from the iso-octane flame environment further confirms the sampled materials to be soot precursor nanoparticles. The DLS size distribution of the particles shows them to be below 10 nm size. FTIR spectrum of the precursor nanoparticles collected form the non-sooting zone of the flame and that of fully grown soot particles show few similarities and dissimilarities among them. The soot particles are found to be much more aromatized as compared to its precursor nanoparticles. The presence of carbonyl functional group (C=O) at around 1,720 cm−1 has been observed in soot precursor nanoparticles, while such oxygenated functional groups are not prominent in soot structure. The absorption (UV and IR) and fluorescence spectra of the carbonaceous material collected from the gasoline engine exhaust show many resemblances with those of soot precursor nanoparticles from flames. These spectroscopic resemblances of the soot precursor nanoparticles from the flame environment and engine exhaust gives the evidence that the in-cylinder combustion is the source of these particles in the engine exhaust.

Keywords

Soot precursor nanoparticle Chemical structure Characterization Flame Engine Spectroscopy 

Notes

Acknowledgments

One of the authors (B. Paul) gratefully acknowledges the support from Council of Scientific and Industrial Research (CSIR), Govt. of India (Grant No. 9/96(0622)2K10-EMR-I) for conducting this research. The TEM measurement has been performed at SINP TEM facility and the EDS has been done at Department of Metallurgical & Material Engineering, Jadavpur University.

References

  1. Anuradha TV, Ranganathan S, Mimani T, Patil KC (2001) Combustion synthesis of nanostructured barium titanate. Scr Mater 44(8–9):2237–2241. doi: 10.1016/S1359-6462(01)00755-2 CrossRefGoogle Scholar
  2. Arenz A, Hellweg CE, Stojicic N, Khan CB, Grotheer H (2006) Gene expression modulation in A549 human lung cells in response to combustion-generated nano- sized particles. Ann NY Acad Sci 1091:170–183. doi: 10.1196/annals.1378.064 CrossRefGoogle Scholar
  3. Banerjee N, Krupanidhi SB (2011) An aqueous-solution based low-temperature pathway to synthesize giant dielectric CaCu3Ti4O12—Highly porous ceramic matrix and submicron sized powder. J Alloy Compd 509(12):4381–4385. doi: 10.1016/j.jallcom.2010.12.137 CrossRefGoogle Scholar
  4. Blevins LG, Fletcher RA, Benner BA Jr, Steel EB, Mulholland GW (2002) The existence of young soot in the exhaust of inverse diffusion flames. Proc Combust Inst 29:2325–2333. doi: 10.1016/S1540-7489(02)80283-8 CrossRefGoogle Scholar
  5. Borghese A and Merola SS (1998) Detection of extremely fine carbonaceous particles in the exhausts of diesel and spark-ignited internal combustion engines, by means of broad band extinction and scattering spectroscopy in the ultraviolet band 190-400 NM. In: Twenty-seventh symposium (International) on combustion/The Combustion Institute 27: 2101–2109. doi: 10.1016/S0082-0784(98)80057-X
  6. Bruno A, de Lisio C, Minutolo P, D’Alessio A (2007) Evidence of fluorescent carbon nanoparticles produced in premixed flames by time-resolved fluorescence polarization anisotropy. Combust Flame 151:472–481. doi: 10.1016/j.combustflame.2007.06.014 CrossRefGoogle Scholar
  7. Cain JP, Gassman PL, Wang H, Laskin A (2010) Micro-FTIR study of soot chemical composition evidence of aliphatic hydrocarbons on nascent soot surfaces. Phys Chem Chem Phys 12:5206–5218. doi: 10.1039/B924344E CrossRefGoogle Scholar
  8. Cecere D, Sgro LA, Basile G, D’Alessio A, D’Anna A, Minutolo P (2002) Evidence and characterization of nanoparticles produced in non-sooting premixed flames. Combust Sci Technol 174:377–398. doi: 10.1080/00102200215079 CrossRefGoogle Scholar
  9. Ciajolo A, Apicella B, Barbella R, Tregrossi A (2000) Correlations of the spectroscopic properties with the chemical composition of flame-formed aromatic mixtures. Combust Sci Technol 153:19–32. doi: 10.1080/00102200008947248 CrossRefGoogle Scholar
  10. Ciajolo A, Ragucci R, Apicella B, Barbella R, de Joannon M, Tregrossi A (2001) Fluorescence spectroscopy of aromatic species produced in rich premixed ethylene flames. Chemosphere 42:835–841CrossRefGoogle Scholar
  11. D’Alessio A, D’Anna A, Gambi G, Minutolo P (1998) The spectroscopic characterization of UV absorbing nanoparticles in fuel rich soot forming flames. J Aerosol Sci 29:397–409 PII: soo21-8502(97)00457-6CrossRefGoogle Scholar
  12. D’Anna A, Rolando A, Allouis C, Minutolo P, D’Alessio A (2005) Nano-organic carbon and soot particle measurements in a laminar ethylene diffusion flame. Proc Combust Inst 30:1449–1456. doi: 10.1016/j.proci.2004.08.276 CrossRefGoogle Scholar
  13. Decesari S, Facchini MC, Matta E, Mircea M, Fuzzi S, Chughtai AR, Smith DM (2002) Water soluble organic compounds formed by oxidation of soot. Atmos Environ 36:1827–1832. doi: 10.1016/S1352-2310(02)00141-3 CrossRefGoogle Scholar
  14. Dobbins RA (2007) Hydrocarbon nanoparticles formed in flames and diesel engines. Aerosol Sci Technol 41:485–496. doi: 10.1080/02786820701225820 CrossRefGoogle Scholar
  15. Dobbins RA, Fletcher RA, Lu W (1995) Laser microprobe analysis of soot precursor particles and carbonaceous soot. Combust Flame 100:301–309. doi: 10.1016/0010-2180(94)00047-V CrossRefGoogle Scholar
  16. Dobbins RA, Fletcher RA, Chang HC (1998) The evolution of soot precursor particles in a diffusion flame. Combust Flame 115:285–298CrossRefGoogle Scholar
  17. Frenklach M (2002) Reaction mechanism of soot formation in flames. Phys Chem Chem Phys 4:2028–2037. doi: 10.1039/B110045A CrossRefGoogle Scholar
  18. Grotheer HH, Hoffmann K, Wolf K, Kanjarkar S, Wahl C, Aigner M (2009) Study of carbonaceous nanoparticles in premixed C2H4–air flames and behind a spark ignition engine. Combust Flame 156:791–800. doi: 10.1016/j.combustflame.2009.01.022 CrossRefGoogle Scholar
  19. Hembram K, Sivaprahasam D, Rao TN (2011) Combustion synthesis of doped nanocrystalline ZnO powders for various applications. J Eur Ceram Soc 31(10):1905–1913. doi: 10.1016/j.jeurceramsoc.2011.04.005 CrossRefGoogle Scholar
  20. Kayes D, Hochgreb S (1999a) Mechanisms of particulate matter formation in spark-ignition engines. 1. Effect of engine operating conditions. Environ Sci Technol 33:3957–3967. doi: 10.1021/es9810991 CrossRefGoogle Scholar
  21. Kayes D, Hochgreb S (1999b) Mechanisms of Particulate matter formation in spark-ignition engines. 2. Effect of fuel, oil, and catalyst parameters. Environ Sci Technol 33:3968–3977. doi: 10.1021/es981100w CrossRefGoogle Scholar
  22. Kayes D, Hochgreb S (1999c) Mechanisms of particulate matter formation in spark-ignition engines. 3. Model of PM formation. Environ Sci Technol 33:3978–3992. doi: 10.1021/es981101o CrossRefGoogle Scholar
  23. Kittelson DB (1998) Engines and nanoparticles: a review. J Aerosol Sci 29(5/6):575–588CrossRefGoogle Scholar
  24. Kittelson DB, Watts WF, Johnson JP, Schauer JJ, Lawson DR (2006) On-road and laboratory evaluation of combustion aerosols—Part 2: summary of spark ignition engine results. Aerosol Science 37:931–949. doi: 10.1016/j.jaerosci.2005.08.008 CrossRefGoogle Scholar
  25. Kroner G, Fuchs H, Tatschl R, Glatter O (2003) Determination of soot particle size in a premixed flame: a static and dynamic light scattering study. Part Part Syst Charact 20:111–123. doi: 10.1002/ppsc.200390008 CrossRefGoogle Scholar
  26. Mansurov ZA (2005) Soot formation in combustion processes (review). Combust Explos Shock Waves 41:727–744. doi: 10.1007/s10573-005-0083-2 CrossRefGoogle Scholar
  27. Maricq MM (2006) A comparison of soot size and charge distributions from ethane, ethylene, acetylene, and benzene/ethylene premixed flames. Combust Flame 144:730–743. doi: 10.1016/j.combustflame.2005.09.007 CrossRefGoogle Scholar
  28. Maricq MM, Podsiadlik DH, Chase RE (1999) Gasoline vehicle particle size distributions: comparison of steady state, FTP, and USO6 measurements. Environ Sci Technol 33:2007–2015. doi: 10.1021/es981005n CrossRefGoogle Scholar
  29. Merola SS, Gambi G, Allouis C, Beretta F, Borghese A, D’Alessio A (2001) Analysis of exhausts emitted by i.c. engines and stationary burners, by means of u.v. extinction and fluorescence spectroscopy. Chemosphere 42:827–834CrossRefGoogle Scholar
  30. Minutolo P, Gambi G and D’Alessio A (1996) The optical band gap model in the interpretation of the UV–visible absorption spectra of rich premixed flames. In: twenty-sixth symposium (International) on combustion/The Combustion Institute p 951–957. doi: 10.1016/S0082-0784(96)80307-9
  31. Minutolo P, Rusciano G, Sgro LA, Pesce G, Sasso A, D’Anna A (2011) Surface enhanced Raman spectroscopy (SERS) of particles produced in premixed flame across soot threshold. Proc Combust Inst 33:649–657. doi: 10.1016/j.proci.2010.07.077 CrossRefGoogle Scholar
  32. Novakov T, Penner JE (1993) Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature 365:823–826. doi: 10.1038/365823a0 CrossRefGoogle Scholar
  33. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A (2002) Extrapulmonary translocation of ultrafine carbon particles following wholebody inhalation exposure of rats. J Toxicol Environ Health A 65(20):1531–1543. doi: 10.1080/00984100290071658 CrossRefGoogle Scholar
  34. Oktem B, Tolocka MP, Zhao B, Wang H, Johnston MV (2005) Chemical species associated with the early stage of soot growth in a laminar premixed ethylene-oxygen-argon flame. Combust Flame 142:364–373. doi: 10.1016/j.combustflame.2005.03.016 CrossRefGoogle Scholar
  35. Paul B, Datta A, Datta A, Saha A (2009) Occurrence and characterization of carbon nanoparticles below the soot laden zone of a partially premixed flame. Combust Flame 156:2319–2327. doi: 10.1016/j.combustflame.2009.07.015 CrossRefGoogle Scholar
  36. Pecora R (2000) Dynamic light scattering measurement of nanometer particles in liquids, J. Nanopart Res 2:123–131. doi: 10.1023/A:1010067107182 CrossRefGoogle Scholar
  37. Rusciano G, Cerrone G, Sasso A, Bruno A, Minutolo P (2006) Infrared analysis of nano organic particles produced in laminar flames. Appl Phys B 82:155–160. doi: 10.1007/s00340-005-1963-6 CrossRefGoogle Scholar
  38. Santamaria A, Mondragon F, Molina A, Marsh ND, Eddings EG, Sarofim AF (2006) FTIR and 1H NMR characterization of the products of an ethylene inverse diffusion flame. Combust Flame 146:52–62. doi: 10.1016/j.combustflame.2006.04.008 CrossRefGoogle Scholar
  39. Santamaria A, Yang N, Eddings E, Mondragon F (2010) Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels. Combust Flame 157:33–42. doi: 10.1016/j.combustflame.2009.09.016 CrossRefGoogle Scholar
  40. Sgro LA, Borghese A (2008) Measurements of nanoparticles of organic carbon and soot in flames and vehicle exhausts. Environ Sci Technol 42:859–863. doi: 10.1021/es070485s CrossRefGoogle Scholar
  41. Sgro LA, Minutolo P, Basile G, D’Alessio A (2001) UV–visible spectroscopy of organic carbon particulate sampled from ethylene/air flames. Chemosphere 42:671–680CrossRefGoogle Scholar
  42. Sgro LA, Basile G, Barone AC, D’Anna A, Minutolo P, Borghese A, D’Alessio A (2003) Detection of combustion formed nanoparticles. Chemosphere 51:1079–1090. doi: 10.1016/S0045-6535(02)00718-X CrossRefGoogle Scholar
  43. Sgro LA, Sementa P, Vaglieco BM, Rusciano G, D’Anna A, Minutolo P (2012) Investigating the origin of nuclei particles in GDI engine exhausts. Combust Flame 159:1687–1692. doi: 10.1016/j.combustflame.2011.12.013 CrossRefGoogle Scholar
  44. Zhao B, Yang Z, Wang J, Johnston MV, Wang H (2003) Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer. Aerosol Sci Technol 37:611–620. doi: 10.1080/02786820390194687 CrossRefGoogle Scholar
  45. Zhao B, Uchikawa K, Wang H (2007) A comparative study of nanoparticles in premixed flames by scanning mobility particle sizer, small angle neutron scattering, and transmission electron microscopy. Proc Combust Inst 31:851–860. doi: 10.1016/j.proci.2006.08.064 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Bireswar Paul
    • 1
  • Amitava Datta
    • 1
    Email author
  • Aparna Datta
    • 2
  • Abhijit Saha
    • 2
  1. 1.Department of Power EngineeringJadavpur UniversityKolkataIndia
  2. 2.UGC-DAE Consortium for Scientific Research, Kolkata CentreKolkataIndia

Personalised recommendations