Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route

  • Kim Seah Tan
  • Kuan Yew CheongEmail author


Silver (Ag) and copper (Cu) nanoparticles have shown great potential in variety applications due to their excellent electrical and thermal properties resulting high demand in the market. Decreasing in size to nanometer scale has shown distinct improvement in these inherent properties due to larger surface-to-volume ratio. Ag and Cu nanoparticles are also shown higher surface reactivity, and therefore being used to improve interfacial and catalytic process. Their melting points have also dramatically decreased compared with bulk and thus can be processed at relatively low temperature. Besides, regularly alloying Ag into Cu to create Ag–Cu alloy nanoparticles could be used to improve fast oxidizing property of Cu nanoparticles. There are varieties methods have been reported on the synthesis of Ag, Cu, and Ag–Cu alloy nanoparticles. This review aims to cover chemical reduction means for synthesis of those nanoparticles. Advances of this technique utilizing different reagents namely metal salt precursors, reducing agents, and stabilizers, as well as their effects on respective nanoparticles have been systematically reviewed. Other parameters such as pH and temperature that have been considered as an important factor influencing the quality of those nanoparticles have also been reviewed thoroughly.


Metal Alloy Reducing agent Stabilizer pH Temperature 



This work was supported by Universiti Sains Malaysia RU-PRGS grant no 8045012. One of the authors (K.S.T.) would like to acknowledge MyPhD scholarship support given by Ministry of Higher Education Malaysia.


  1. Abdulla-Al-Mamun M, Kusumoto Y, Muruganandham M (2009) Simple new synthesis of copper nanoparticles in water/acetonitrile mixed solvent and their characterization. Mater Lett 63(23):2007–2009. doi: 10.1016/j.matlet.2009.06.037 CrossRefGoogle Scholar
  2. Agrawal VV, Mahalakshmi P, Kulkarni GU, Rao CNR (2005) Nanocrystalline films of Au–Ag, Au–Cu, and Au–Ag–Cu alloys formed at the organic–aqueous interface. Langmuir 22(4):1846–1851. doi: 10.1021/la052595n CrossRefGoogle Scholar
  3. Al-Thabaiti SA, Al-Nowaiser FM, Obaid AY, Al-Youbi AO, Khan Z (2008) Formation and characterization of surfactant stabilized silver nanoparticles: a kinetic study. Colloids Surf B 67(2):230–237. doi: 10.1016/j.colsurfb.2008.08.022 CrossRefGoogle Scholar
  4. Ang TP, Chin WS (2005) Dodecanethiol-protected copper/silver bimetallic nanoclusters and their surface properties. J Phys Chem B 109(47):22228–22236. doi: 10.1021/jp053429r CrossRefGoogle Scholar
  5. Angelescu DG, Vasilescu M, Anastasescu M, Baratoiu R, Donescu D, Teodorescu VS (2012) Synthesis and association of Ag(0) nanoparticles in aqueous Pluronic F127 triblock copolymer solutions. Colloid Surf A 394:57–66. doi: 10.1016/j.colsurfa.2011.11.025 CrossRefGoogle Scholar
  6. Athawale AA, Katre PP, Kumar M, Majumdar MB (2005) Synthesis of CTAB–IPA reduced copper nanoparticles. Mater Chem Phys 91(2–3):507–512. doi: 10.1016/j.matchemphys.2004.12.017 CrossRefGoogle Scholar
  7. Ayyappan S, Gopalan RS, Subbanna GN, Rao CNR (1997) Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J Mater Res 12(2):398–401. doi: 10.1557/JMR.1997.0057 CrossRefGoogle Scholar
  8. Biçer M, Şişman İ (2010) Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technol 198(2):279–284. doi: 10.1016/j.powtec.2009.11.022 CrossRefGoogle Scholar
  9. Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top–down and bottom–up surface nanofabrication: techniques, applications and future prospects. Adv Colloid Interface Sci 170(1–2):2–27. doi: 10.1016/j.cis.2011.11.001 CrossRefGoogle Scholar
  10. Blosi M, Albonetti S, Dondi M, Martelli C, Baldi G (2011) Microwave-assisted polyol synthesis of Cu nanoparticles. J Nanopart Res 13(1):127–138. doi: 10.1007/s11051-010-0010-7 CrossRefGoogle Scholar
  11. Bulut E, Özacar M (2009) Rapid, facile synthesis of silver nanostructure using hydrolyzable tannin. Ind Eng Chem Res 48(12):5686–5690. doi: 10.1021/ie801779f CrossRefGoogle Scholar
  12. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. doi: 10.1021/cr030063a CrossRefGoogle Scholar
  13. Cañamares MV, Garcia-Ramos JV, Gómez-Varga JD, Domingo C, Sanchez-Cortes S (2005) Comparative study of the morphology, aggregation, adherence to glass, and surface-enhanced raman scattering activity of silver nanoparticles prepared by chemical reduction of Ag+ using citrate and hydroxylamine. Langmuir 21(18):8546–8553. doi: 10.1021/la050030l CrossRefGoogle Scholar
  14. Cao G, Wang Y (2010) Nanostructures and nanomaterials: synthesis, properties, and applications. Imperial College Press, LondonGoogle Scholar
  15. Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110(1–2):49–74. doi: 10.1016/j.cis.2004.02.003 CrossRefGoogle Scholar
  16. Castonguay A, Kakkar AK (2010) Dendrimer templated construction of silver nanoparticles. Adv Colloid Interface Sci 160(1–2):76–87. doi: 10.1016/j.cis.2010.07.006 CrossRefGoogle Scholar
  17. Chandra S, Kumar A, Tomar PK (2011) Synthesis and characterization of copper nanoparticles by reducing agent. J Saudi Chem Soc. doi: 10.1016/j.jscs.2011.06.009
  18. Chang J, Lee JH, Cha JH, Jung DY, Choi G, Kim G (2011) Bimetallic nanoparticles of copper and indium by borohydride reduction. Thin Solid Films 519(7):2176–2180. doi: 10.1016/j.tsf.2010.11.038 CrossRefGoogle Scholar
  19. Chen DH, Huang YW (2002) Spontaneous formation of Ag nanoparticles in dimethylacetamide solution of poly(ethylene glycol). J Colloid Interface Sci 255(2):299–302. doi: 10.1006/jcis.2002.8674 CrossRefGoogle Scholar
  20. Chen L, Zhang D, Chen J, Zhou H, Wan H (2006) The use of CTAB to control the size of copper nanoparticles and the concentration of alkylthiols on their surfaces. Mater Sci Eng, A 415(1–2):156–161. doi: 10.1016/j.msea.2005.09.060 Google Scholar
  21. Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23(10):5296–5304. doi: 10.1021/la700553d CrossRefGoogle Scholar
  22. Cheng X, Zhang X, Yin H, Wang A, Xu Y (2006) Modifier effects on chemical reduction synthesis of nanostructured copper. Appl Surf Sci 253(5):2727–2732. doi: 10.1016/j.apsusc.2006.05.125 CrossRefGoogle Scholar
  23. Cheng Z, Zhong H, Xu J, Chu X, Song Y, Xu M, Huang H (2011) Facile fabrication of ultrasmall and uniform copper nanoparticles. Mater Lett 65(19–20):3005–3008. doi: 10.1016/j.matlet.2011.06.037 CrossRefGoogle Scholar
  24. Chou KS, Ren CY (2000) Synthesis of nanosized silver particles by chemical reduction method. Mater Chem Phys 64(3):241–246. doi: 10.1016/s0254-0584(00)00223-6 CrossRefGoogle Scholar
  25. Chou KS, Lu YC, Lee HH (2005) Effect of alkaline ion on the mechanism and kinetics of chemical reduction of silver. Mater Chem Phys 94(2–3):429–433. doi: 10.1016/j.matchemphys.2005.05.029 CrossRefGoogle Scholar
  26. Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111(6):3713–3735. doi: 10.1021/cr1002529 CrossRefGoogle Scholar
  27. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc 75:790–798Google Scholar
  28. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946. doi: 10.1021/cr030027b CrossRefGoogle Scholar
  29. Dadgostar N, Ferdous S, Henneke D (2010) Colloidal synthesis of copper nanoparticles in a two-phase liquid–liquid system. Mater Lett 64(1):45–48. doi: 10.1016/j.matlet.2009.09.067 CrossRefGoogle Scholar
  30. Dadosh T (2009) Synthesis of uniform silver nanoparticles with a controllable size. Mater Lett 63(26):2236–2238. doi: 10.1016/j.matlet.2009.07.042 CrossRefGoogle Scholar
  31. Das R, Nath SS, Bhattacharjee R (2011) Luminescence of copper nanoparticles. J Lumin 131(12):2703–2706. doi: 10.1016/j.jlumin.2011.05.019 CrossRefGoogle Scholar
  32. Davis RE, Bromels E, Kibby CL (1962) Boron hydrides. III. Hydrolysis of sodium borohydride in aqueous solution. J Am Chem Soc 84(6):885–892. doi: 10.1021/ja00865a001 CrossRefGoogle Scholar
  33. Dobbie JW, Evans R, Gibson DV, Smitham JB, Napper DH (1973) Enhanced steric stabilization. J Colloid Interface Sci 45(3):557–565. doi: 10.1016/0021-9797(73)90172-0 CrossRefGoogle Scholar
  34. Dong X, Ji X, Wu H, Zhao L, Li J, Yang W (2009) Shape control of silver nanoparticles by stepwise citrate reduction. J Phys Chem C 113(16):6573–6576. doi: 10.1021/jp900775b CrossRefGoogle Scholar
  35. Doty RC, Tshikhudo TR, Brust M, Fernig DG (2005) Extremely stable water-soluble Ag nanoparticles. Chem Mater 17(18):4630–4635. doi: 10.1021/cm0508017 CrossRefGoogle Scholar
  36. El-Nour KMMA, Eftaiha AA, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3(3):135–140. doi: 10.1016/j.arabjc.2010.04.008 CrossRefGoogle Scholar
  37. Frattini A, Pellegri N, Nicastro D, Sanctis OD (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94(1):148–152. doi: 10.1016/j.matchemphys.2005.04.023 CrossRefGoogle Scholar
  38. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105(4):1171–1196. doi: 10.1021/cr030076o CrossRefGoogle Scholar
  39. Ghosh K, Kolay S (2008) Preparation of Ag nanoparticles in surfactant solution. J Dispers Sci Technol 29(5):676–681. doi: 10.1080/01932690701756826 CrossRefGoogle Scholar
  40. Guzmán MG, Dille J, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng 2(3):104–111Google Scholar
  41. Hashemipour H, Zadeh ME, Pourakbari R, Rahimi P (2011) Investigation on synthesis and size control of copper nanoparticle via electrochemical and chemical reduction method. Int J Phys Sci 6(18):4331–4336. doi: 10.5897/IJPS10.204 Google Scholar
  42. Hegde S, Kapoor S, Joshi S, Mukherjee T (2006) Effect of ethylene glycol-bis(2-aminoethylether)-N, N, N′, N′-tetraacetic acid (EGTA) on the growth, stabilization and morphology of silver nanoparticles. Colloid Surf A 280(1–3):116–124. doi: 10.1016/j.colsurfa.2006.01.041 CrossRefGoogle Scholar
  43. Hsu SLC, Wu RT (2010) Preparation of silver nanoparticle with different particle sizes for low temperature-sintering. In: International conference on nanotechnology biosensors. IACSIT Press, Hong Kong, pp 55–58Google Scholar
  44. Janardhanan R, Karuppaiah M, Hebalkar N, Rao TN (2009) Synthesis and surface chemistry of nano silver particles. Polyhedron 28(12):2522–2530. doi: 10.1016/j.poly.2009.05.038 CrossRefGoogle Scholar
  45. Jiang H, Moon KS, Wong CP (2005) Synthesis of Ag-Cu alloy nanoparticles for lead-free interconnect materials. In: International symposium on advanced packaging mater, 16–18 March 2005, pp 173–177. doi: 10.1109/isapm.2005.1432072
  46. Jin L, Yang SP, Tian QW, Wu HX, Cai YJ (2008) Preparation and characterization of copper metal nanoparticles using dendrimers as protectively colloids. Mater Chem Phys 112(3):977–983. doi: 10.1016/j.matchemphys.2008.06.073 CrossRefGoogle Scholar
  47. Johnston RL (2002) Atomic and molecular clusters. Taylor & Francis, LondonCrossRefGoogle Scholar
  48. Kaler A, Patel N, Banerjee UC (2010) Green synthesis of silver nanoparticles. Curr Res Inf Pharm Sci 11(4):68–71Google Scholar
  49. Khan Z, Al-Thabaiti SA, El-Mossalamy EH, Obaid AY (2009) Studies on the kinetics of growth of silver nanoparticles in different surfactant solutions. Colloid Surf B 73(2):284–288. doi: 10.1016/j.colsurfb.2009.05.030 CrossRefGoogle Scholar
  50. Khan Z, Al-Thabaiti SA, Obaid AY, Al-Youbi AO (2011) Preparation and characterization of silver nanoparticles by chemical reduction method. Colloid Surf B 82(2):513–517. doi: 10.1016/j.colsurfb.2010.10.008 CrossRefGoogle Scholar
  51. Khanna PK, Subbarao VVVS (2003) Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium. Mater Lett 57(15):2242–2245. doi: 10.1016/S0167-577X(02)01203-X CrossRefGoogle Scholar
  52. Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater Chem Phys 93(1):117–121. doi: 10.1016/j.matchemphys.2005.02.029 CrossRefGoogle Scholar
  53. Khanna PK, Gaikwad S, Adhyapak PV, Singh N, Marimuthu R (2007a) Synthesis and characterization of copper nanoparticles. Mater Lett 61(25):4711–4714. doi: 10.1016/j.matlet.2007.03.014 CrossRefGoogle Scholar
  54. Khanna PK, Singh N, Kulkarni D, Deshmukh S, Charan S, Adhyapak PV (2007b) Water based simple synthesis of re-dispersible silver nano-particles. Mater Lett 61(16):3366–3370. doi: 10.1016/j.matlet.2006.11.064 CrossRefGoogle Scholar
  55. Khanna PK, Kale TS, Shaikh M, Rao NK, Satyanarayana CVV (2008) Synthesis of oleic acid capped copper nano-particles via reduction of copper salt by SFS. Mater Chem Phys 110(1):21–25. doi: 10.1016/j.matchemphys.2008.01.013 CrossRefGoogle Scholar
  56. Kim JS (2007) Reduction of silver nitrate in ethanol by poly(N-vinylpyrrolidone). J Ind Eng Chem 13(4):566–570Google Scholar
  57. Kobayashi Y, Shirochi T, Yasuda Y, Morita T (2011) Preparation of metallic copper nanoparticles in aqueous solution and their bonding properties. Solid State Sci 13(3):553–558. doi: 10.1016/j.solidstatesciences.2010.12.025 CrossRefGoogle Scholar
  58. Kobayashi Y, Shirochi T, Yasuda Y, Morita T (2012) Metal–metal bonding process using metallic copper nanoparticles prepared in aqueous solution. Int J Adhes Adhes 33:50–55. doi: 10.1016/j.ijadhadh.2011.11.002 CrossRefGoogle Scholar
  59. Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV (2008) Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77(3):233–257. doi: 10.1070/RC2008v077n03ABEH003751 CrossRefGoogle Scholar
  60. Krutyakov YA, Kudrinsky AA, Olenin AY, Lisichkin GV (2010) Synthesis of highly stable silver colloids stabilized with water soluble sulfonated polyaniline. Appl Surf Sci 256(23):7037–7042. doi: 10.1016/j.apsusc.2010.05.020 CrossRefGoogle Scholar
  61. Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S (2007) One dimensional nanostructured materials. Prog Mater Sci 52(5):699–913. doi: 10.1016/j.pmatsci.2006.08.001 CrossRefGoogle Scholar
  62. Lah NAC, Johan MR (2009) Highly potential properties of Ag nanostructures: Controlled synthesis and characterization. In: 11th International conference on advanced mater, BrazilGoogle Scholar
  63. Lah NAC, Johan MR (2011) Facile shape control synthesis and optical properties of silver nanoparticles stabilized by Daxad 19 surfactant. Appl Surf Sci 257(17):7494–7500. doi: 10.1016/j.apsusc.2011.03.067 CrossRefGoogle Scholar
  64. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395CrossRefGoogle Scholar
  65. Lee KJ, Lee YI, Shim IK, Jun BH, Cho HJ, Joung J (2007) Large-scale synthesis of polymer-stabilized silver nanoparticles. Solid State Phenom 124–126:1189–1192. doi: 10.4028/ CrossRefGoogle Scholar
  66. Li G, Luo Y (2007) Preparation and characterization of dendrimer-templated Ag–Cu bimetallic nanoclusters. Inorg Chem 47(1):360–364. doi: 10.1021/ic701090c CrossRefGoogle Scholar
  67. Li X, Zhang J, Xu W, Jia H, Wang X, Yang B, Zhao B, Li B, Ozaki Y (2003) Mercaptoacetic acid-capped silver nanoparticles colloid: formation, morphology, and SERS activity. Langmuir 19(10):4285–4290. doi: 10.1021/la0341815 CrossRefGoogle Scholar
  68. Li T, Park HG, Choi SH (2007) γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys 105(2–3):325–330. doi: 10.1016/j.matchemphys.2007.04.069 CrossRefGoogle Scholar
  69. Li YS, Lu YC, Chou KS, Liu FJ (2010) Synthesis and characterization of silver–copper colloidal ink and its performance against electrical migration. Mater Res Bull 45(12):1837–1843. doi: 10.1016/j.materresbull.2010.09.013 CrossRefGoogle Scholar
  70. Limsavarn L, Sritaveesinsub V, Dubas ST (2007) Polyelectrolyte assisted silver nanoparticles synthesis and thin film formation. Mater Lett 61(14–15):3048–3051. doi: 10.1016/j.matlet.2006.10.072 CrossRefGoogle Scholar
  71. Lines MG (2008) Nanomaterials for practical functional uses. J Alloy Compd 449(1–2):242–245. doi: 10.1016/j.jallcom.2006.02.082 CrossRefGoogle Scholar
  72. Liu MS, Lin MCC, Tsai CY, Wang CC (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Tran 49(17–18):3028–3033. doi: 10.1016/j.ijheatmasstransfer.2006.02.012 CrossRefGoogle Scholar
  73. Liu J, Lee JB, Kim DH, Kim Y (2007) Preparation of high concentration of silver colloidal nanoparticles in layered laponite sol. Colloid Surf A 302(1–3):276–279. doi: 10.1016/j.colsurfa.2007.02.040 CrossRefGoogle Scholar
  74. Liu J, Li X, Zeng X (2010) Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste. J Alloy Compd 494(1–2):84–87. doi: 10.1016/j.jallcom.2010.01.079 CrossRefGoogle Scholar
  75. Liu QM, Zhou DB, Yamamoto Y, Ichino R, Okido M (2012a) Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. T Nonferr Metal Soc 22(1):117–123. doi: 10.1016/s1003-6326(11)61149-7 CrossRefGoogle Scholar
  76. Liu YY, Liu XY, Yang JM, Lin DL, Chen X, Zha LS (2012b) Investigation of Ag nanoparticles loading temperature responsive hybrid microgels and their temperature controlled catalytic activity. Colloid Surf A 393:105–110. doi: 10.1016/j.colsurfa.2011.11.007 CrossRefGoogle Scholar
  77. Liz-Marzán LM (2005) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41. doi: 10.1021/la0513353 CrossRefGoogle Scholar
  78. Liz-Marzán LM, Kamat PV (2003) Nanoscale materials. Kluwer, DordrechtGoogle Scholar
  79. Lu YC, Chou KS (2008) A simple and effective route for the synthesis of nano-silver colloidal dispersions. J Chin Inst Chem Eng, 39(6):673–678. doi: 10.1016/j.jcice.2008.06.005 CrossRefGoogle Scholar
  80. Lu YZ, Wei WT, Chen W (2012) Copper nanoclusters: synthesis, characterization and properties. Chin Sci Bull 57(1):41–47. doi: 10.1007/s11434-011-4896-y CrossRefGoogle Scholar
  81. Lundahl P, Stokes R, Smith E, Martin R, Graham D (2008) Synthesis and characterisation of monodispersed silver nanoparticles with controlled size ranges. Micro Nano Lett 3(2):62–65. doi: 10.1049/mnl:20080003 CrossRefGoogle Scholar
  82. Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288(2):444–448. doi: 10.1016/j.jcis.2005.03.005 CrossRefGoogle Scholar
  83. Ma Y, Li N, Yang C, Yang X (2005) One-step synthesis of amino-dextran-protected gold and silver nanoparticles and its application in biosensors. Anal Bioanal Chem 382(4):1044–1048. doi: 10.1007/s00216-005-3222-4 CrossRefGoogle Scholar
  84. Maillard M, Giorgio S, Pileni MP (2002) Silver nanodisks. Adv Mater 14(15):1084–1086. doi: 10.1002/1521-4095(20020805)14:15<1084:AID-ADMA1084>3.0.CO;2-L CrossRefGoogle Scholar
  85. Maillard M, Giorgio S, Pileni MP (2003) Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties. J Phys Chem B 107(11):2466–2470. doi: 10.1021/jp022357q CrossRefGoogle Scholar
  86. Manikam VR, Cheong KY, Razak KA (2011) Chemical reduction methods for synthesizing Ag and Al nanoparticles and their respective nanoalloys. Mater Sci Eng, B 176(3):187–203. doi: 10.1016/j.mseb.2010.11.006 CrossRefGoogle Scholar
  87. Martínez AG, Barbosa S, Santos IP, Marzán LML (2011) Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr Opin Colloid Interface Sci 16(2):118–127. doi: 10.1016/j.cocis.2010.12.007 CrossRefGoogle Scholar
  88. Martinez-Castanon GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10(8):1343–1348. doi: 10.1007/s11051-008-9428-6 CrossRefGoogle Scholar
  89. Medina-Ramirez I, Bashir S, Luo Z, Liu JL (2009) Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloid Surf B 73(2):185–191. doi: 10.1016/j.colsurfb.2009.05.015 CrossRefGoogle Scholar
  90. Meng XK, Tang SC, Vongehr S (2010) A review on diverse silver nanostructures. J Mater Sci Technol 26(6):487–522. doi: 10.1016/s1005-0302(10)60078-3 CrossRefGoogle Scholar
  91. Moon GD, Ko S, Min Y, Zeng J, Xia Y, Jeong U (2011) Chemical transformations of nanostructured materials. Nano Today 6(2):186–203. doi: 10.1016/j.nantod.2011.02.006 CrossRefGoogle Scholar
  92. Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84(2):322. doi: 10.1021/ed084p322 CrossRefGoogle Scholar
  93. Muñoz-Flores BM, Kharisov BI, Jiménez-Pérez VM, Elizondo Martínez P, López ST (2011) Recent advances in the synthesis and main applications of metallic nanoalloys. Ind Eng Chem Res 50(13):7705–7721. doi: 10.1021/ie200177d CrossRefGoogle Scholar
  94. Naik B, Prasad VS, Ghosh NN (2010) A simple aqueous solution based chemical methodology for synthesis of Ag nanoparticles dispersed on mesoporous silicate matrix. Powder Technol 199(2):197–201. doi: 10.1016/j.powtec.2010.01.005 CrossRefGoogle Scholar
  95. Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169(2):59–79. doi: 10.1016/j.cis.2011.08.004 CrossRefGoogle Scholar
  96. Nersisyan HH, Lee JH, Son HT, Won CW, Maeng DY (2003) A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion. Mater Res Bull 38(6):949–956. doi: 10.1016/s0025-5408(03)00078-3 CrossRefGoogle Scholar
  97. Nickel U, Castell AZ, Pöppl K, Schneider S (2000) A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir 16(23):9087–9091. doi: 10.1021/la000536y CrossRefGoogle Scholar
  98. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Edit 40(22):4128–4158. doi: 10.1002/1521-3773(20011119)40:22<4128:aid-anie4128>;2-s CrossRefGoogle Scholar
  99. Ohde H, Hunt F, Wai CM (2001) Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion. Chem Mater 13(11):4130–4135. doi: 10.1021/cm010030g CrossRefGoogle Scholar
  100. Pal A, Shah S, Devi S (2009) Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater Chem Phys 114(2–3):530–532. doi: 10.1016/j.matchemphys.2008.11.056 CrossRefGoogle Scholar
  101. Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná T, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253. doi: 10.1021/jp063826h CrossRefGoogle Scholar
  102. Parak WJ, Simmel FC, Holleitner AW (2010) Top-down versus bottom-up. In: Nanotechnology, vol 9. Wiley-VCH, Weinheim, pp 41–47. doi: 10.1002/9783527628155.nanotech003
  103. Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311(2):417–424. doi: 10.1016/j.jcis.2007.03.039 CrossRefGoogle Scholar
  104. Patakfalvi R, Diaz D, Velasco-Arias D, Rodriguez-Gattorno G, Santiago-Jacinto P (2008) Synthesis and direct interactions of silver colloidal nanoparticles with pollutant gases. Colloid Polym Sci 286(1):67–77. doi: 10.1007/s00396-007-1702-0 CrossRefGoogle Scholar
  105. Patil RS, Kokate MR, Jambhale CL, Pawar SM, Han SH, Kolekar SS (2012) One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application. Adv Nat Sci 3:015013. doi: 10.1088/2043-6262/3/1/015013 Google Scholar
  106. Pham LQ, Sohn JH, Park JH, Kang HS, Lee BC, Kang YS (2011) Comparative study on the preparation of conductive copper pastes with copper nanoparticles prepared by electron beam irradiation and chemical reduction. Radiat Phys Chem 80(5):638–642. doi: 10.1016/j.radphyschem.2011.01.004 CrossRefGoogle Scholar
  107. Pinto VV, Ferreira MJ, Silva R, Santos HA, Silva F, Pereira CM (2010) Long time effect on the stability of silver nanoparticles in aqueous medium: effect of the synthesis and storage conditions. Colloid Surf A 364(1–3):19–25. doi: 10.1016/j.colsurfa.2010.04.015 CrossRefGoogle Scholar
  108. Pomogailo AD, Kestelman VN (2005) Principles and mechanisms of nanoparticle stabilization by polymers. In: Metallopolymer nanocomposites, vol 81. Springer, New York, pp 65–113. doi: 10.1007/3-540-26523-6_3
  109. Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley, HobokenGoogle Scholar
  110. Qin Y, Ji X, Jing J, Liu H, Wu H, Yang W (2010) Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloid Surf A 372(1–3):172–176. doi: 10.1016/j.colsurfa.2010.10.013 CrossRefGoogle Scholar
  111. Radziuk D, Skirtach A, Sukhorukov G, Shchukin D, Möhwald H (2007) Stabilization of silver nanoparticles by polyelectrolytes and poly(ethylene glycol). Macromol Rapid Commun 28(7):848–855. doi: 10.1002/marc.200600895 CrossRefGoogle Scholar
  112. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116. doi: 10.1016/j.matlet.2011.12.055 CrossRefGoogle Scholar
  113. Rao CRK, Trivedi DC (2005) Synthesis and characterization of fatty acids passivated silver nanoparticles—their interaction with PPy. Synth Metal 155(2):324–327. doi: 10.1016/j.synthmet.2005.01.038 CrossRefGoogle Scholar
  114. Rao CRK, Trivedi DC (2006) Biphasic synthesis of fatty acids stabilized silver nanoparticles: role of experimental conditions on particle size. Mater Chem Phys 99(2–3):354–360. doi: 10.1016/j.matchemphys.2005.11.004 CrossRefGoogle Scholar
  115. Rao CNR, Ramakrishna Matte HSS, Voggu R, Govindaraj A (2012) Recent progress in the synthesis of inorganic nanoparticles. Dalton Trans 41(17):5089–5120. doi: 10.1039/c2dt12266a CrossRefGoogle Scholar
  116. Ratyakshi, Chauhan RP (2009) Colloidal synthesis of silver nano particles. Asian J Chem 21(10):113–116Google Scholar
  117. Raut D, Wankhede K, Vaidya V, Bhilare S, Darwatkar N, Deorukhkar A, Trivedi G, Salunkhe M (2009) Copper nanoparticles in ionic liquids: recyclable and efficient catalytic system for 1, 3-dipolar cycloaddition reaction. Catal Commun 10(8):1240–1243. doi: 10.1016/j.catcom.2009.01.027 CrossRefGoogle Scholar
  118. Ren X, Chen D, Tang F (2005) Shape-controlled synthesis of copper colloids with a simple chemical route. J Phys Chem B 109(33):15803–15807. doi: 10.1021/jp052374q CrossRefGoogle Scholar
  119. Rodríguez-Gattorno G, Díaz D, Rendón L, Hernández-Segura GO (2002) Metallic nanoparticles from spontaneous reduction of silver(I) in DMSO. Interaction between nitric oxide and silver nanoparticles. J Phys Chem B 106(10):2482–2487. doi: 10.1021/jp012670c CrossRefGoogle Scholar
  120. Rozenberg BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33(1):40–112. doi: 10.1016/j.progpolymsci.2007.07.004 CrossRefGoogle Scholar
  121. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111(6):3669–3712. doi: 10.1021/cr100275d CrossRefGoogle Scholar
  122. Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22(16):1781–1804. doi: 10.1002/adma.200901271 CrossRefGoogle Scholar
  123. Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M (2004) Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir 20(18):7825–7836. doi: 10.1021/la049258j CrossRefGoogle Scholar
  124. Seo WS, Kim TH, Sung JS, Song KC (2004) Synthesis of silver nanoparticles by chemical reduction method. Korean Chem Eng Res 42:78–83Google Scholar
  125. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1–2):83–96. doi: 10.1016/j.cis.2008.09.002 CrossRefGoogle Scholar
  126. Shi J (2002) Steric stabilization. The Ohio State University, ColumbusGoogle Scholar
  127. Shon YS, Cutler E (2004) Aqueous synthesis of alkanethiolate-protected Ag nanoparticles using Bunte salts. Langmuir 20(16):6626–6630. doi: 10.1021/la049417z CrossRefGoogle Scholar
  128. Sileikaite A, Prosycevas I, Puiso J, Juraitis A, Guobiene A (2006) Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater Sci 12(4):287–291Google Scholar
  129. Singh M, Sinha I, Mandal RK (2009) Synthesis of nanostructured Ag–Cu alloy ultra-fine particles. Mater Lett 63(26):2243–2245. doi: 10.1016/j.matlet.2009.07.043 CrossRefGoogle Scholar
  130. Singh M, Sinha I, Premkumar M, Singh AK, Mandal RK (2010) Structural and surface plasmon behavior of Cu nanoparticles using different stabilizers. Colloid Surf A 359(1–3):88–94. doi: 10.1016/j.colsurfa.2010.01.069 CrossRefGoogle Scholar
  131. Singh M, Sinha I, Singh AK, Mandal RK (2011) LSPR and SAXS studies of starch stabilized Ag–Cu alloy nanoparticles. Colloid Surf A 384(1–3):668–674. doi: 10.1016/j.colsurfa.2011.05.037 CrossRefGoogle Scholar
  132. Solanki JN, Murthy ZVP (2011) Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review. Ind Eng Chem Res 50(22):12311–12323. doi: 10.1021/ie201649x CrossRefGoogle Scholar
  133. Solanki JN, Sengupta R, Murthy ZVP (2010) Synthesis of copper sulphide and copper nanoparticles with microemulsion method. Solid State Sci 12(9):1560–1566. doi: 10.1016/j.solidstatesciences.2010.06.021 CrossRefGoogle Scholar
  134. Sondi I, Goia DV, Matijević E (2003) Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J Colloid Interface Sci 260(1):75–81. doi: 10.1016/S0021-9797(02)00205-9 CrossRefGoogle Scholar
  135. Song X, Sun S, Zhang W, Yin Z (2004) A method for the synthesis of spherical copper nanoparticles in the organic phase. J Colloid Interface Sci 273(2):463–469. doi: 10.1016/j.jcis.2004.01.019 CrossRefGoogle Scholar
  136. Song KC, Lee SM, Park TS, Lee BS (2009) Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J Chem Eng 26(1):153–155. doi: 10.1007/s11814-009-0024-y CrossRefGoogle Scholar
  137. Suber L, Plunkett WR (2010) Formation mechanism of silver nanoparticle 1D microstructures and their hierarchical assembly into 3D superstructures. Nanoscale 2(1):128–133. doi: 10.1039/B9NR00072K CrossRefGoogle Scholar
  138. Suber L, Sondi I, Matijević E, Goia DV (2005) Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions. J Colloid Interface Sci 288(2):489–495. doi: 10.1016/j.jcis.2005.03.017 CrossRefGoogle Scholar
  139. Sun L, Zhang Z, Dang H (2003) A novel method for preparation of silver nanoparticles. Mater Lett 57(24–25):3874–3879. doi: 10.1016/S0167-577X(03)00232-5 CrossRefGoogle Scholar
  140. Szczepanowicz K, Stefanska J, Socha RP (2010) Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity. Physicochem Probl Miner Process 45:85–98Google Scholar
  141. Tan Y, Li Y, Zhu D (2003) Preparation of silver nanocrystals in the presence of aniline. J Colloid Interface Sci 258(2):244–251. doi: 10.1016/S0021-9797(02)00151-0 CrossRefGoogle Scholar
  142. Tanaka T, Ohyama J, Teramura K, Hitomi Y (2012) Formation mechanism of metal nanoparticles studied by XAFS spectroscopy and effective synthesis of small metal nanoparticles. Catal Today 183(1):108–118. doi: 10.1016/j.cattod.2011.09.003 CrossRefGoogle Scholar
  143. Taner M, Sayar N, Yulug IG, Suzer S (2011) Synthesis, characterization and antibacterial investigation of silver-copper nanoalloys. J Mater Chem 21(35):13150–13154. doi: 10.1039/C1JM11718A CrossRefGoogle Scholar
  144. Tang XF, Yang ZG, Wang WJ (2010) A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology. Colloid Surf A 360(1–3):99–104. doi: 10.1016/j.colsurfa.2010.02.011 CrossRefGoogle Scholar
  145. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed 6(2):257–262. doi: 10.1016/j.nano.2009.07.002 CrossRefGoogle Scholar
  146. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006. doi: 10.1016/j.scitotenv.2009.11.003 CrossRefGoogle Scholar
  147. Tran TH, Nguyen TD (2011) Controlled growth of uniform noble metal nanocrystals: aqueous-based synthesis and some applications in biomedicine. Colloid Surf B 88(1):1–22. doi: 10.1016/j.colsurfb.2011.07.017 CrossRefGoogle Scholar
  148. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–57. doi: 10.1039/DF9511100055 CrossRefGoogle Scholar
  149. Ullah MH, Il K, Ha CS (2006) Preparation and optical properties of colloidal silver nanoparticles at a high Ag+ concentration. Mater Lett 60(12):1496–1501. doi: 10.1016/j.matlet.2005.11.058 CrossRefGoogle Scholar
  150. Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46(3):384–389. doi: 10.1016/j.materresbull.2010.12.001 CrossRefGoogle Scholar
  151. Van Hyning DL, Zukoski CF (1998) Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14(24):7034–7046. doi: 10.1021/la980325h CrossRefGoogle Scholar
  152. Van Hyning DL, Klemperer WG, Zukoski CF (2001a) Characterization of colloidal stability during precipitation reactions. Langmuir 17(11):3120–3127. doi: 10.1021/la000855p CrossRefGoogle Scholar
  153. Van Hyning DL, Klemperer WG, Zukoski CF (2001b) Silver nanoparticle formation: predictions and verification of the aggregative growth model. Langmuir 17(11):3128–3135. doi: 10.1021/la000856h CrossRefGoogle Scholar
  154. Vorobyova SA, Lesnikovich AI, Sobal NS (1999) Preparation of silver nanoparticles by interphase reduction. Colloid Surf A 152(3):375–379. doi: 10.1016/s0927-7757(98)00861-9 CrossRefGoogle Scholar
  155. Wang D, Li Y (2011) Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 23(9):1044–1060. doi: 10.1002/adma.201003695 CrossRefGoogle Scholar
  156. Wang H, Qiao X, Chen J, Ding S (2005) Preparation of silver nanoparticles by chemical reduction method. Colloid Surf A 256(2–3):111–115. doi: 10.1016/j.colsurfa.2004.12.058 CrossRefGoogle Scholar
  157. Wang D, An J, Luo Q, Li X, Li M (2008) A convenient approach to synthesize stable silver nanoparticles and silver/polystyrene nanocomposite particles. J Appl Polym Sci 110(5):3038–3046. doi: 10.1002/app.28442 CrossRefGoogle Scholar
  158. Wang L, Xie H, Tian Z, Zhu L, Bing N, Wang L (2010) One-step solution synthesis of Ag-Cu nanoalloys. In: Symposium on photonics and optoelectronic (SOPO), 19–21 June 2010, pp 1–4. doi: 10.1109/sopo.2010.5504276
  159. Wen J, Li J, Liu S, Chen QY (2011) Preparation of copper nanoparticles in a water/oleic acid mixed solvent via two-step reduction method. Colloid Surf A 373(1–3):29–35. doi: 10.1016/j.colsurfa.2010.10.009 CrossRefGoogle Scholar
  160. Wen Y, Huang W, Wang B, Fan J, Gao Z, Yin L (2012) Synthesis of Cu nanoparticles for large-scale preparation. Mater Sci Eng, B 177(8):619–624. doi: 10.1016/j.mseb.2012.02.026 CrossRefGoogle Scholar
  161. Wu S (2007) Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC. Mater Lett 61(4–5):1125–1129. doi: 10.1016/j.matlet.2006.06.068 CrossRefGoogle Scholar
  162. Wu SH, Chen DH (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273(1):165–169. doi: 10.1016/j.jcis.2004.01.071 CrossRefGoogle Scholar
  163. Xia N, Cai Y, Jiang T, Yao J (2011) Green synthesis of silver nanoparticles by chemical reduction with hyaluronan. Carbohydr Polym 86(2):956–961. doi: 10.1016/j.carbpol.2011.05.053 CrossRefGoogle Scholar
  164. Yan W, Wang R, Xu Z, Xu J, Lin L, Shen Z, Zhou Y (2006) A novel, practical and green synthesis of Ag nanoparticles catalyst and its application in three-component coupling of aldehyde, alkyne, and amine. J Mol Catal A 255(1–2):81–85. doi: 10.1016/j.molcata.2006.03.055 Google Scholar
  165. Yang J, Qi L, Lu C, Ma J, Cheng H (2005) Morphosynthesis of rhombododecahedral silver cages by self-assembly coupled with precursor crystal templating. Angew Chem Int Edit 44(4):598–603. doi: 10.1002/anie.200461859 CrossRefGoogle Scholar
  166. Yang JG, Yang SH, Okamoto T, Bessho T, Satake S, Ichino R, Okido M (2006) Synthesis of copper monolayer and particles at aqueous–organic interface. Surf Sci 600(24):L318–L320. doi: 10.1016/j.susc.2006.10.014 CrossRefGoogle Scholar
  167. Yang J, Yin H, Jia J, Wei Y (2011) Facile synthesis of high-concentration, stable aqueous dispersions of uniform silver nanoparticles using aniline as a reductant. Langmuir 27(8):5047–5053. doi: 10.1021/la200013z CrossRefGoogle Scholar
  168. Yu DG (2007) Formation of colloidal silver nanoparticles stabilized by Na+-poly(γ-glutamic acid-silver nitrate complex via chemical reduction process. Colloid Surf B 59(2):171–178. doi: 10.1016/j.colsurfb.2007.05.007 CrossRefGoogle Scholar
  169. Yu L, Zhang Y (2010) Preparation of nano-silver flake by chemical reduction method. Rare Metal Mater Eng 39(3):401–404. doi: 10.1016/s1875-5372(10)60088-4 CrossRefGoogle Scholar
  170. Yu W, Xie H, Chen L, Li Y (2010) Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles. Powder Technol 197(3):218–221. doi: 10.1016/j.powtec.2009.09.016 CrossRefGoogle Scholar
  171. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178. doi: 10.1038/nbt874 CrossRefGoogle Scholar
  172. Zhang Z, Zhao B, Hu L (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121(1):105–110. doi: 10.1006/jssc.1996.0015 CrossRefGoogle Scholar
  173. Zhang W, Qiao X, Chen J (2007) Synthesis of silver nanoparticles—effects of concerned parameters in water/oil microemulsion. Mater Sci Eng, B 142(1):1–15. doi: 10.1016/j.mseb.2007.06.014 CrossRefGoogle Scholar
  174. Zhang Y, Peng H, Huang W, Zhou Y, Zhang X, Yan D (2008) Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J Phys Chem C 112(7):2330–2336. doi: 10.1021/jp075436g CrossRefGoogle Scholar
  175. Zhang HX, Siegert U, Liu R, Cai W-B (2009) Facile fabrication of ultrafine copper nanoparticles in organic solvent. Nanoscale Res Lett 4(7):705–708. doi: 10.1007/s11671-009-9301-2 CrossRefGoogle Scholar
  176. Zhang QL, Yang ZM, Ding BJ, Lan XZ, Guo YJ (2010) Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. T Nonferr Metal Soc 20(1):s240–s244. doi: 10.1016/s1003-6326(10)60047-7 CrossRefGoogle Scholar
  177. Zhang D, Liu X, Wang X (2011a) Formation and optical properties of silver superlattice using hydrazine hydrate as reducing agent. Microsyst Technol 17(8):1293–1299. doi: 10.1007/s00542-011-1308-9 CrossRefGoogle Scholar
  178. Zhang R, Khalizov A, Wang L, Hu M, Xu W (2011b) Nucleation and growth of nanoparticles in the atmosphere. Chem Rev 112(3):1957–2011. doi: 10.1021/cr2001756 CrossRefGoogle Scholar
  179. Zhao S, Zhang K, An J, Sun Y, Sun C (2006a) Synthesis and layer-by-layer self-assembly of silver nanoparticles capped by mercaptosulfonic acid. Mater Lett 60(9–10):1215–1218. doi: 10.1016/j.matlet.2005.11.007 CrossRefGoogle Scholar
  180. Zhao S, Zhang K, Sun Y, Sun C (2006b) Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode: direct electrochemistry and electrocatalysis. Bioelectrochem 69(1):10–15. doi: 10.1016/j.bioelechem.2005.09.004 CrossRefGoogle Scholar
  181. Zhao Y, Jiang Y, Fang Y (2006c) Spectroscopy property of Ag nanoparticles. Spectrochim Acta A 65(5):1003–1006. doi: 10.1016/j.saa.2006.01.010 CrossRefGoogle Scholar
  182. Zhao J, Zhang D, Zhao J (2011) Fabrication of Cu–Ag core–shell bimetallic superfine powders by eco-friendly reagents and structures characterization. J Solid State Chem 184(9):2339–2344. doi: 10.1016/j.jssc.2011.06.032 CrossRefGoogle Scholar
  183. Zhu HT, Lin YS, Yin YS (2004a) A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interface Sci 277(1):100–103. doi: 10.1016/j.jcis.2004.04.026 CrossRefGoogle Scholar
  184. Zhu HT, Zhang CY, Yin YS (2004b) Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J Cryst Growth 270(3–4):722–728. doi: 10.1016/j.jcrysgro.2004.07.008 CrossRefGoogle Scholar
  185. Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J (2009) Preparation of silver nanoparticles with controlled particle size. Procedia Chem 1(2):1560–1566. doi: 10.1016/j.proche.2009.11.004 CrossRefGoogle Scholar
  186. Zou X, Bao H, Guo H, Zhang L, Qi L, Jiang J, Niu L, Dong S (2006) Mercaptoethane sulfonate protected, water-soluble gold and silver nanoparticles: syntheses, characterization and their building multilayer films with polyaniline via ion-dipole interactions. J Colloid Interface Sci 295(2):401–408. doi: 10.1016/j.jcis.2005.10.053 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Electronic Materials Research Group, School of Materials and Mineral Resources EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations