Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers

  • T. Schneider
  • N. Jahr
  • J. Jatschka
  • A. Csaki
  • O. Stranik
  • W. Fritzsche
Research Paper


The effect of DNA–DNA interaction on the localized surface plasmon resonance of single 80 nm gold nanoparticles is studied. Therefore, both the attachment of the capture DNA strands at the particle surface and the sequence-specific DNA binding (hybridization) of analyte DNA to the immobilized capture DNA is subject of investigations. The influence of substrate attachment chemistry, the packing density of DNA as controlled by an assisting layer of smaller molecules, and the distance as increased by a linker on the LSPR efficiency is investigated. The resulting changes in signal can be related to a higher hybridization efficiency of the analyte DNA to the immobilized capture DNA. The subsequent attachment of additional DNA strands to this system is studied, which allows for a multiple step detection of binding and an elucidation of the resulting resonance shifts. The detection limit was determined for the utilized DNA system by incubation with various concentration of analyte DNA. Although the method allows for a marker-free detection, we show that additional markers such as 20 nm gold particle labels increase the signal and thereby the sensitivity significantly. The study of resonance shift for various DNA lengths revealed that the resonance shift per base is stronger for shorter DNA molecules (20 bases) as compared to longer ones (46 bases).


LSPR Single nanoparticle spectroscopy DNA hybridization 



The authors thank Marie Löchner, Nicole Wendt, and Martin Knoll for assistance with LSPR measurements. The work was supported by the German Research Foundation DFG (FR 1348/12-1), the European Science Foundation ESF (New Approaches to Biochemical Sensing with Plasmonic Nanobiophotonics–Plasmon-Bionanosense, short visit grant 3633) and by IRCSET–Marie Curie International Mobility Fellowship in Science, Engineering and Technology.

Supplementary material

11051_2013_1531_MOESM1_ESM.docx (517 kb)
Supplementary material 1 (DOCX 517 kb)


  1. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453CrossRefGoogle Scholar
  2. Bohren CF, Huffman (2007) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  3. Cao C, Sim SJ (2009) Resonant Rayleigh light scattering response of individual Au nanoparticles to antigen-antibody interaction. Lab Chip 9(13):1836–1839CrossRefGoogle Scholar
  4. Csaki A, Schneider T, Wirth J, Jahr N, Steinbrück A, Stranik O, Garwe F, Müller R, Fritzsche W (2011) Molecular plasmonics: light meets molecules at the nanoscale, philosophical transactions of the royal society a: mathematical. Phys Eng Sci 369(1950):3483–3496CrossRefGoogle Scholar
  5. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72(22):5535–5541CrossRefGoogle Scholar
  6. Fang Y, Hoh JH (1998) Surface-directed DNA condensation in the absence of soluble multivalent cations. Nucleic Acids Res 26(2):588–593CrossRefGoogle Scholar
  7. Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181CrossRefGoogle Scholar
  8. Fotin AV, Drobyshev AL, Proudnikov DY, Perov AN, Mirzabekov AD (1998) Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips. Nucleic Acids Res 26(6):1515–1521CrossRefGoogle Scholar
  9. Getz EB, Xiao M, Chakrabarty T, Cooke R, Selvin PR (1999) A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. Anal Biochem 273(1):73–80CrossRefGoogle Scholar
  10. Haes AJ, Duyne RPV (2004) Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics. Expert Rev Mol Diagn 4(4):527–537CrossRefGoogle Scholar
  11. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2003) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108(1):109–116CrossRefGoogle Scholar
  12. Hagerman PJ (1988) Flexibility of DNA. Annu Rev Biophys Biomol Struct 17(1):265–286CrossRefGoogle Scholar
  13. Han JC, Han GY (1994) A procedure for quantitative determination of tris(2-carboxyethyl)phosphine, an odorless reducing agent more stable and effective than dithiothreitol. Anal Biochem 220(1):5–10CrossRefGoogle Scholar
  14. Hernandez FJ, Dondapati SK, Ozalp VC, Pinto A, O’Sullivan CK, Klar TA, Katakis I (2009) Label free optical sensor for avidin based on single gold nanoparticles functionalized with aptamers. J Biophotonics 2(4):227–231CrossRefGoogle Scholar
  15. Herne TM, Tarlov MJ (1997) Characterisation of DNA probes immobilized on gold surfaces. J Am Chem Soc 119:8916–8920CrossRefGoogle Scholar
  16. Lee J, Hasan W, Stender CL, Odom TW (2008) Pyramids: a platform for designing multifunctional plasmonic particles. Acc Chem Res 41(12):1762–1771CrossRefGoogle Scholar
  17. Levicky R, Herne TM, Tarlov MJ, Satija SK (1998) Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. J Am Chem Soc 120:9787–9792CrossRefGoogle Scholar
  18. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101(39):14036–14039CrossRefGoogle Scholar
  19. Maliwal BP, Kuśba J, Lakowicz JR (1995) Fluorescence energy transfer in one dimension: frequency-domain fluorescence study of DNA–fluorophore complexes. Biopolymers 35(2):245–255CrossRefGoogle Scholar
  20. Mayer MK et al (2010) A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology 21(25):255503CrossRefGoogle Scholar
  21. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330(3):377–445CrossRefGoogle Scholar
  22. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116(15):6755–6759CrossRefGoogle Scholar
  23. Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3(4):485–491CrossRefGoogle Scholar
  24. Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nano 3(10):598–602CrossRefGoogle Scholar
  25. Piliarik M, Sípová H, Kvasnicka P, Galler N, Krenn JR, Homola J (2012) High-resolution biosensor based on localized surface plasmons. Opt Express 20(1):672–680CrossRefGoogle Scholar
  26. Raschke G. (2005) Molekulare Erkennung mit einzelnen Gold–Nanopartikeln. Dissertation, LMU München: Fakultät für PhysikGoogle Scholar
  27. Raschke G, Kowarik S, Franzl T, Sonnichsen K, Klar TA, Feldmann J, Nichtl A, Kurzinger K (2003) Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett 3(7):935–938CrossRefGoogle Scholar
  28. Sannomiya T, Hafner C, Voros J (2008) In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett 8(10):3450–3455CrossRefGoogle Scholar
  29. Schena M (2003) Microarray analysis. Wiley-Liss, HobokenGoogle Scholar
  30. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88(7):077402CrossRefGoogle Scholar
  31. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005a) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745CrossRefGoogle Scholar
  32. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005b) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotech 23(6):741–745CrossRefGoogle Scholar
  33. Tichoniuk M, Ligaj M, Filipiak M (2008) Application of DNA hybridization biosensor as a screening method for the detection of genetically modified food components. Sensors 8(4):2118–2135CrossRefGoogle Scholar
  34. Tinland B, Pluen A, Sturm J, Weill G (1997) Persistence length of single-stranded DNA. Macromolecules 30(19):5763–5765CrossRefGoogle Scholar
  35. Verdoold R, Gill R, Ungureanu F, Molenaar R, Kooyman RPH (2011) Femtomolar DNA detection by parallel colorimetric darkfield microscopy of functionalized gold nanoparticles. Biosens Bioelectron 27(1):77–81CrossRefGoogle Scholar
  36. Zamborini FP, Bao L, Dasari R (2011) Nanoparticles in measurement science. Anal Chem 84(2):541–576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • T. Schneider
    • 1
  • N. Jahr
    • 1
  • J. Jatschka
    • 1
  • A. Csaki
    • 1
  • O. Stranik
    • 1
  • W. Fritzsche
    • 1
  1. 1.Department of Nano BiophotonicsInstitute of Photonic Technology (IPHT)JenaGermany

Personalised recommendations