Measuring Friedel pairs in nanomembranes of GaAs (001)

  • Raul O. Freitas
  • Christoph F. Deneke
  • Ângelo Malachias
  • Gaspar Darin
  • Sérgio L. Morelhão
Research Paper
Part of the following topical collections:
  1. Nanostructured Materials 2012. Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos


Friedel pairs are susceptible to symmetry breaking in crystals. Under resonant scattering conditions, non-centrosymmetric crystals can give rise to pairs of hkl and \(\bar{h}\bar{k}\bar{l}\) reflections with different diffracted intensities, which are quantified as an anomalous signal of the structure. In bulk crystals, the shift in the anomalous signal through an absorption edge can be measured with good accuracy regardless the crystalline quality of the sample, leading to experimental values in agreement with theoretical ones. With the advance of nanotechnology and synchrotron sources, it has been possible to produce free-standing nanomembranes of semiconductor crystals, opening the opportunity of checking the measurability of anomalous signal in nanoscale materials. In this study, we describe a successful procedure to measure the anomalous signal in nanomembranes of GaAs (001) 15-nm thick with synchrotron radiation. Different membrane processing methods and diffraction geometries were tested, and major sources of instrumental inaccuracy were identified. Relevances of this type of measurements in nanotechnology as well as in basic science are discussed.


Bijvoet pairs Free-standing nanomembranes Single crystals Synchrotron X-ray diffraction Atomic resonance 



We acknowledge the funding agency for research of the São Paulo State FAPESP (Proc. No. 2012/15858-8), the National agency CNPq (Proc. No. 304247/2009-0) and support of the Brazilian synchrotron. Thanks are also due to M.H. de Oliveira Piazetta and A.L. Gobbi from LMF-LNNano for lithography in microfabrication of the membranes.


  1. Azimonte C, Granado E, Terashita H, Park S, Cheong S-W (2010) Polar atomic displacements in multiferroics observed via anomalous X-ray diffraction. Phys Rev B 81:12103. doi: 10.1103/PhysRevB.81.012103 CrossRefGoogle Scholar
  2. Deneke C, Muller C, Jin-Phillipp NY, Schmidt OG (2002) Diameter scalability of rolled-up In(Ga)As/GaAs nanotubes. Semicond Sci Technol 17:1278–1281. doi: 10.1088/0268-1242/17/12/312 CrossRefGoogle Scholar
  3. Giacovazzo C (ed) (2002) Fundamentals of crystallography, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  4. Hubbell JH, Veigele WmJ, Briggs EA, Brown RT, Cromer DT, Howerton RJ (1975) Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J Phys Chem Ref Data 4:471–538. doi: 10.1063/1.555523 CrossRefGoogle Scholar
  5. Lovesey SW, Collins SP (1996) X-ray scattering and absorption by magnetic materials. Clarendon press, OxfordGoogle Scholar
  6. Malachias A, Mei YF, Annabattula RK, Deneke C, Onck PR, Schmidt OG (2008) Wrinkled-up nanochannel networks: long-range ordering, scalability, and X-ray investigation. ACS Nano 2:1715–1721. doi: 10.1021/nn800308p CrossRefGoogle Scholar
  7. Malachias A, Freitas R, Morelhão S, Magalhães-Paniago R, Kycia S, Medeiros-Ribeiro G (2012) X-ray diffraction methods for studying strain and composition in epitaxial nanostructured systems. In: Haight R, Ross FM, Hannon JB, Feldman LC (eds) Handbook of instrumentation and techniques for semiconductor nanostructure characterization. World Scientific, Hackensack, pp 256–324Google Scholar
  8. Pietsch U, Holý V, Baumbach T (2004) High-resolution X-ray scattering: from thin films to lateral nanostructures. Springer, New YorkCrossRefGoogle Scholar
  9. Prince E (ed) (2006) International tables for crystallography, volume C: mathematical, physical and chemical tables. Wiley, New York, pp 554–590Google Scholar
  10. Rastelli A, Ding F, Plumhof JD, Kumar S, Trotta R, Deneke C, Malachias A, Atkinson P, Zallo E, Zander T, Herklotz A, Singh R, Krápek V, Schröter JR, Kiravittaya S, Benyoucef M, Hafenbrak R, Jöns KD, Thurmer DJ, Grimm D, Bester G, Dörr K, Michler P, Schmidt OG (2012) Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators. Phys Status Solidi (b) 249:687–696. doi: 10.1002/pssb.201100775 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Raul O. Freitas
    • 1
  • Christoph F. Deneke
    • 2
    • 3
  • Ângelo Malachias
    • 4
  • Gaspar Darin
    • 5
  • Sérgio L. Morelhão
    • 5
  1. 1.Brazilian Synchrotron Light Laboratory (LNLS)CampinasBrazil
  2. 2.Brazilian Nanotechnology National Laboratory (LNNano)CampinasBrazil
  3. 3.IFW DresdenDresdenGermany
  4. 4.Departamento de FísicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  5. 5.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations