Magnetic properties of iron oxide nanoparticles prepared by seeded-growth route

  • A. EspinosaEmail author
  • A. Muñoz-Noval
  • M. García-Hernández
  • A. Serrano
  • J. Jiménez de la Morena
  • A. Figuerola
  • A. Quarta
  • T. Pellegrino
  • C. Wilhelm
  • M. A. García
Research Paper


In this work we investigate the magnetic properties of iron oxide nanoparticles obtained by two-step synthesis (seeded-growth route) with sizes that range from 6 to 18 nm. The initial seeds result monocrystalline and exhibit ferromagnetic behavior with low saturation field. The subsequent growth of a shell enhances the anisotropy inducing magnetic frustration, and, consequently, reducing its magnetization. This increase in anisotropy occurs suddenly at a certain size (~10 nm). Electronic and structural analysis with X-ray absorption spectroscopy indicates a step reduction in the oxidation state as the particle reaches 10 nm size while keeping its overall structure in spite of the magnetic polydispersity. The formation of antiphase magnetic boundaries due to island percolation in the growing shells is hypothesized to be the mechanism responsible of the magnetic behavior, as a direct consequence of the two-step synthesis route of the nanoparticles.


Magnetic nanoparticles Superparamagnetism X-ray absorption spectroscopy Antiphase boundaries 



This work was supported by the European project MAGNIFYCO (Contract NMP4-SL-2009-228622); Spanish Ministerio de Economía y Competitividad grants CSD2009-00013, MAT2011-27470-C02-02, and FIS-2008-06249; and Madrid Region Council project NANOBIOMAGNET (S2009/MAT-1726). A. F. acknowledges financial support from the Spanish MICINN through CTQ2009-06959 and for a Ramón y Cajal Fellowship (RYC-2010-05821). We thank F. Gazeau and M. Levy for their essential contributions, and C. Prieto for helpful discussions on the XAS measurements. We acknowledge ESRF for beamtime and BM25 personnel for technical support.


  1. Arora SK, Sofin RGS, Nolan A, Shvets IV (2005) Antiphase boundaries induced exchange coupling in epitaxial Fe3O4 thin films. J Magn Magn Mater 286:463–467CrossRefGoogle Scholar
  2. Azad AK, Mellergård A, Eriksson SG, Ivanov SA, Yunus SM, Lindberg F, Svensson G, Mathieu R (2005) Structural and magnetic properties of La2FeCrO6 studied by neutron diffraction, electron diffraction and magnetometry. Mater Res Bull 40:1633–1644CrossRefGoogle Scholar
  3. Batlle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties 15:R15–R42Google Scholar
  4. Batlle X, García del Muro M, Tejada J, Pfeiffer H, Görnert P, Sinn E (1993) Magnetic study of M-type doped barium ferrite nanocrystalline powders. J Appl Phys 74(5):3333CrossRefGoogle Scholar
  5. Batlle X, Pérez N, Guardia P et al (2011) Magnetic nanoparticles with bulklike properties (invited). J Appl Phys 109(7):07B524CrossRefGoogle Scholar
  6. Cabot A, Puntes VF, Shevchenko E, Yin Y, Balcells L, Marcus M a, Hughes SM, Alivisatos P (2007) Vacancy coalescence during oxidation of iron nanoparticles. J Am Chem Soc 129(34):10358–10360CrossRefGoogle Scholar
  7. Caizer C, Savii C, Popovici M (2003) Magnetic behaviour of iron oxide nanoparticles dispersed in a silica matrix. Mater Sci Eng, B 97:129–134CrossRefGoogle Scholar
  8. Carta D, Casula MF, Mountjoy G, Corrias A (2008) Formation and cation distribution in supported manganese ferrite nanoparticles: an X-ray absorption study. Phys Chem Chem Phys 10(21):3108–3117Google Scholar
  9. Coey JMD (1971) Noncollinear Spin Arrangement in Ultrafine Ferrimagnetic Crystallites. Phys Rev Lett 17:1140–1142CrossRefGoogle Scholar
  10. Cornell RM, Schwertmann U (2003) The Iron Oxides, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  11. Corrias A, Ennas G, Mountjoy G, Paschina G (2000) An X-ray absorption spectroscopy study of the Fe K edge in nanosized maghemite and in Fe2O3–SiO2 nanocomposites. Physical Chemistry Chemical Physics 2:1045–1050CrossRefGoogle Scholar
  12. Corrias A, Mountjoy G, Loche D, Puntes V, Falqui A, Zanella M, Parak WJ, Casula MF (2009) Identifying Spinel Phases in Nearly Monodisperse Iron Oxide Colloidal Nanocrystal. J Phys Chem C 113(43):18667–18675CrossRefGoogle Scholar
  13. Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. Wiley-IEEE Press, HobokenGoogle Scholar
  14. Eerenstein W, Palstra T, Hibma T, Celotto S (2003) Diffusive motion of antiphase domain boundaries in Fe3O4 films. Phys Rev B 68(1):1–7CrossRefGoogle Scholar
  15. Espinosa A, Serrano A, Llavona A, Jiménez de la Morena J, Abuin M, Figuerola A, Pellegrino T, Fernández JF, García-Hernández M, Castro GR, García MA (2012) On the discrimination between magnetite and maghemite by XANES measurements in fluorescence mode. Meas Sci Technol 23(1):015602CrossRefGoogle Scholar
  16. Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological research: the official journal of the Italian Pharmacological Society 62(2):126–143CrossRefGoogle Scholar
  17. Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635CrossRefGoogle Scholar
  18. Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94(5):3520–3528CrossRefGoogle Scholar
  19. Guardia P, Batlle-Brugal B, Roca AG, Iglesias O, Morales MP, Serna CJ, Labarta A, Batlle X (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316(2):e756–e759CrossRefGoogle Scholar
  20. Guardia P, Labarta A, Batlle X (2011) Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles. J Phys Chem C 115:390–396CrossRefGoogle Scholar
  21. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRefGoogle Scholar
  22. Jiao F, Jumas J-C, Womes M, Chadwick AV, Harrison A, Bruce PG (2006) Synthesis of ordered mesoporous Fe3O4 and gamma-Fe2O3 with crystalline walls using post-template reduction/oxidation. J Am Chem Soc 128(39):12905–12909CrossRefGoogle Scholar
  23. Jiménez-Villacorta F, Sánchez-Marcos J, Céspedes E, García-Hernández M, Prieto C (2010) Effects of interparticle interactions in magnetic Fe/Si3N4 granular systems. Phys Rev B 82(13):1–12CrossRefGoogle Scholar
  24. Klementev KV (2001) Extraction of the fine structure from X-ray absorption spectra. J Phys D Appl Phys 34:209–217CrossRefGoogle Scholar
  25. Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372CrossRefGoogle Scholar
  26. Kunzl V (1932) A linear dependence of energy levels on the valency of elements. Collection des Travaux Chimiques de Tchécoslovaquie 4:213–224Google Scholar
  27. Levy M, Quarta A, Espinosa A, Figuerola A, Wilhem C, García-Hernández M, Genovese A, Falqui A, Alloyeau D, Buonsanti R, Cozzoli PD, García MA, Gazeau F, Pellegrino T (2011) Correlating Magneto-Structural Properties to Hyperthermia Performance of Highly Monodisperse Iron Oxide Nanoparticles Prepared by a Seeded-Growth Route. Chem Mater 23:4170–4180CrossRefGoogle Scholar
  28. Linderoth S, Hendriksen PV, Bodker F, Wells S, Davies K, Charles SW, Morup S (1994) On spin-canting in maghemite particles. J Appl Phys 75(10):6583–6585CrossRefGoogle Scholar
  29. Lu A-H, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F (2004) Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem Int Ed Engl 43(33):4303–4306CrossRefGoogle Scholar
  30. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46(8):1222–1244CrossRefGoogle Scholar
  31. Luigjes B, Woudenberg SMC, Groot RD, Meeldijk JD, Galvis HMT, Jong KPD, Philipse AP, Ern BH (2011) Diverging Geometric and Magnetic Size Distributions of Iron Oxide Nanocrystals. J Phys Chem C 115:14598–14605CrossRefGoogle Scholar
  32. Margulies DT, Parker FT, Rudee ML, Spada FE, Chapman JN, Aitchison PR, Berkowitz AE (1997) Origin of the Anomalous Magnetic Behavior in Single Crystal Fe3O4 Films. Phys. Rev. Lett. 79(25):5162–5165CrossRefGoogle Scholar
  33. Martínez B, Obradors X, Balcells L, Rouanet A, Monty C (1998) Low Temperature Surface Spin-Glass Transition in g-Fe2O3 Nanoparticles. Phys Rev Lett 80:181–184CrossRefGoogle Scholar
  34. Meiklejohn WH, Bean CP (1957) New Magnetic Anisotropy. Physical Review 105:904–913Google Scholar
  35. Morales MP, Veintemillas-Verdaguer S, Montero MI, Serna CJ, Roig A, Casas L, Martinez B, Sandiumenge F (1999) Surface and Internal Spin Canting in γ-Fe2O3 Nanoparticles. Chem Mater 12:3058–3064CrossRefGoogle Scholar
  36. Newville M (2001) Ifeffit: interactive exafs analysis and feff fitting. J Synchrotron Radiat 8:322–324CrossRefGoogle Scholar
  37. Nogués J, Schuller IK (1999) Exchange Bias. J Magn Magn Mater 192:203–232CrossRefGoogle Scholar
  38. Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz JS, Baró MD (2005) Exchange bias in nanostructures. Phys Rep 422(3):65–117CrossRefGoogle Scholar
  39. Novakova AA, Lanchinskaya VY, Volkov AV, Gendler TS, Kiseleva TY, Moskvina MA, Zezin SB (2003) Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles. 259:354–357Google Scholar
  40. Pankhurst QA, Pollard RJ (1991) Origin of the Spin-Canting Anomaly in Small Ferrimagnetic Particles. Phys Rev Lett 67:248–250CrossRefGoogle Scholar
  41. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys 36:R167–R181CrossRefGoogle Scholar
  42. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Rädler J, Natile G, Parak WJ (2004) Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell : A General Route to Water Soluble Nanocrystals. Nano Lett 4:703–707CrossRefGoogle Scholar
  43. Poddar P, Fried T, Markovich G (2002) First-order metal-insulator transition and spin-polarized tunneling in Fe3O4 nanocrystals. Phys Rev B 65(17):3–6CrossRefGoogle Scholar
  44. Rehr JJ (1993) Recent Developments in Multiple-Scattering Calculations of XAFS and XANES. Jpn J Appl Phys 32:8–12CrossRefGoogle Scholar
  45. Shendruk TN, Desautels RD, Southern BW, van Lierop J (2007) The effect of surface spin disorder on the magnetism of γ-Fe2O3 nanoparticle dispersions. Nanotechnology 18(45):455704CrossRefGoogle Scholar
  46. Signorini L, Pasquini L, Savini L, Carboni R, Boscherini F, Bonetti E, Giglia A, Pedio M, Mahne N, Nannarone S (2003) Size-dependent oxidation in iron/iron oxide core-shell nanoparticles. Phys Rev B 68(19):1–8CrossRefGoogle Scholar
  47. Sun S, Zheng H (2002) Size-Controlled Synthesis of Magnetite Nanoparticles. J Am Chem Soc 124:8204–8205CrossRefGoogle Scholar
  48. Sun SH, Murray SB, Weller D, Folks L, Moser A (2000) Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 287(5460):1989–1992CrossRefGoogle Scholar
  49. Villafuerte-Castrejón ME, García-Guaderrama M, Fuentes L, Prado-Gonjal J, González AM, de la Rubia MÁ, García-Hernández M, Morán E (2011) New Fe3+/Cr3+ perovskites with anomalous transport properties: the solid solution La(x)Bi(1-x)Fe(0.5)Cr(0.5)O3 (0.4 ≤ x ≤ 1). Inorg Chem 50(17):8340–8347CrossRefGoogle Scholar
  50. Wang C, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y (2009) Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J Am Chem Soc 131(25):8824–8832CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Espinosa
    • 1
    Email author
  • A. Muñoz-Noval
    • 2
    • 3
  • M. García-Hernández
    • 1
  • A. Serrano
    • 2
  • J. Jiménez de la Morena
    • 1
    • 2
  • A. Figuerola
    • 4
  • A. Quarta
    • 5
  • T. Pellegrino
    • 5
    • 6
  • C. Wilhelm
    • 7
  • M. A. García
    • 2
  1. 1.Instituto de Ciencia de Materiales de Madrid (ICMM)Consejo Superior de Investigaciones CientíficasMadridSpain
  2. 2.Instituto de Cerámica y Vidrio (ICV)Consejo Superior de Investigaciones CientíficasMadridSpain
  3. 3.SpLine Spanish CRG Beamline at the ESRFGrenoble Cedex 09France
  4. 4.Departament de Química Inorgànica i Institut de Nanociència i NanotecnologiaUniversitat de BarcelonaBarcelonaSpain
  5. 5.National Nanotechnology Laboratory of CNR-NANOLecceItaly
  6. 6.Istituto Italiano di TecnologiaGenoaItaly
  7. 7.Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057CNRS and Université Paris DiderotParis Cedex 13France

Personalised recommendations