Iron carbide nanoparticles growth in room temperature ionic liquids [C n -MIM][BF4] (n = 12, 16)

  • Lenaïc Lartigue
  • Jérôme Long
  • Xavier Dumail
  • Sergey I. Nikitenko
  • Camille Cau
  • Yannick GuariEmail author
  • Lorenzo Stievano
  • Moulay T. Sougrati
  • Christian Guérin
  • Claudio Sangregorio
  • Joulia Larionova
Research Paper


The thermal decomposition of Fe x (CO) y precursors for the synthesis of nanoparticles of iron carbides and their superstructures with sizes ranging from 2.8 to 15.1 nm is developed using imidazolium-based ionic liquids as solvents, stabilizers, and carbon source. A study of the influence of some synthesis parameters such as the heating temperature, nature, and concentration of the iron carbonyl precursor and chain length of the N-alkyl substituent on the imidazolium ring on the size and organization of the iron carbide nanoparticles is presented. These iron carbides nano-objects were characterized by infra-red spectroscopy, transmission electronic microscopy, powder X-ray diffraction, Mossbauer spectroscopy, and magnetic analyses.


Nanoparticle Cementite Iron carbide Ionic Liquids Magnetic properties 



The authors thank Mme Corine Reibel (ICGM, Montpellier, France) for magnetic measurements. This work was supported by the University of Montpellier II, CNRS and French ANR-2010-BLAN-0810 NEQSON project. L. L. thanks the UFI (GF/IR/732/07, n°25) for financial support.

Supplementary material

11051_2013_1490_MOESM1_ESM.doc (128 kb)
Supplementary material 1 (DOC 127 kb)


  1. Amendola V, Riello P, Meneghetti M (2011) Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents. J Phys Chem C 115:5140–5146CrossRefGoogle Scholar
  2. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic structures. Angew Chem Int Ed 43:4988–4992CrossRefGoogle Scholar
  3. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nanotoday 2:22–32CrossRefGoogle Scholar
  4. Bao N, Shen L, An W, Padhan P, Turner CH, Gupta A (2009) Formation mechanism and shpae control of monodisperse magnetic CoFe2O4 nanocrystals. Chem Mater 21:3458–3462CrossRefGoogle Scholar
  5. Bittova B, Vejpravova JP, Kalbac M, Burianova S, Mantlikova A, Danis S, Doyle S (2011) Magnetic properties of iron catalyst particles in HiPco single wall carbon nanotubes. J Phys Chem C 115:17303–17309CrossRefGoogle Scholar
  6. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Green processing using ionic liquids and CO2. Nature 399:28–29CrossRefGoogle Scholar
  7. Bösmann A, Francio G, Edo J, Solinas M, Leitner W, Wasserscheid P (2001) Activation, tuning, and immobilization of homogeneous catalysts in an ionic liquid/compressed CO2 continuous-flow system. Angew Chem Int Ed 2:2697–2699CrossRefGoogle Scholar
  8. Calo V, Nacci A, Monopoli A, Laera S, Cioffi N (2003) Pd nanoparticles catalysed stereospecific synthesis of β-aryl cinnamic esters in ionic liquids. J Org Chem 68:2929–2933CrossRefGoogle Scholar
  9. Carvell J, Ayieta E, Johnson M, Cheng R (2009) Characterization of iron nanoparticles synthesized by high pressure sputtering. Mater Lett 63:715–717CrossRefGoogle Scholar
  10. Cheng JP, Zhang XB, Yi GF, Ye Y, Xia MS (2008) Preparation and magnetic properties of iron oxide and carbide nanoparticles in carbon nanotube matrix. J Alloy Compd 455:5–9CrossRefGoogle Scholar
  11. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase synthesis of inorganic nanoparticles. Chem Rev 104:38933946CrossRefGoogle Scholar
  12. David B, Pizurova N, Schneeweiss O, Bezdicka P, Alexandrescu R, Morjan I, Crunteanu A, Voicu I (2005) Magnetic properties of iron/graphite core-shell nanoparticles prepared by annealing of Fe–G–N based nanocomposite. J Magn Magn Mater 290:179–182CrossRefGoogle Scholar
  13. David B, Schneeweiss O, Mashlan M, Šantavá E, Morjan I (2007) Low-temperature magnetic properties of Fe3C/iron oxide nanocomposite. J Magn Magn Mater 316:422–425CrossRefGoogle Scholar
  14. Demortière A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, Begin-Colin S (2011) Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale 3:225–232CrossRefGoogle Scholar
  15. Derjaguin BV (1989) Theory of stability of colloids and thin liquid films. Plenum, Consultants Bureau, New YorkGoogle Scholar
  16. Dickinson VE, Williams ME, Hendrickson SM, Masui H, Murray RW, Hill C, Carolina N (1999) Hybrid redox polyether melts based on polyether tailed counterions. J Am Chem Soc 121:613–616CrossRefGoogle Scholar
  17. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124:4228–4229CrossRefGoogle Scholar
  18. Göbel R, Xie Z-L, Neumann M, Günter C, Löbbicke R, Kubo S, Titirici M–M, Giordano C, Taubert A (2012) Synthesis of mesoporous carbon/iron carbide hybrids with unusually high surface areas from the ionic liquid precursor [Bmim][FeCl4]. Cryst Eng Comm 14:4946–4951CrossRefGoogle Scholar
  19. Grosse G (1993) PC-Mos II, 1.0th edn. Technische Universität München, MunichGoogle Scholar
  20. Herrmann IK, Grass RN, Mazunin D, Stark WJ (2009) Synthesis and covalent surface functionalization of nonoxidic iron core-shell nanomagnets. Chem Mater 21:3275–3281CrossRefGoogle Scholar
  21. Hofer LJE, Cohn EM (1959) Saturation magnetizations of iron carbides. J Am Chem Soc 81:1576–1582CrossRefGoogle Scholar
  22. Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates: Ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 13:2133–2139CrossRefGoogle Scholar
  23. Huang J, Jiang T, Han B, Gao H, Chang Y, Zhao G, Wu W (2003) Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid. Chem Commun 14:1654–1655CrossRefGoogle Scholar
  24. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1:482–501CrossRefGoogle Scholar
  25. Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Room temperature ionic liquids as novel media for “clean” liquid–liquid extraction. Chem Commun 16:1765–1766CrossRefGoogle Scholar
  26. Huo J, Song H, Chen X, Lian W (2006) Formation and transformation of carbon-encapsulated iron carbide/iron nanorods. Carbon 44:2849–2852CrossRefGoogle Scholar
  27. Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquids based on the imidazolium cation. J Am Chem Soc 126:3026–3027CrossRefGoogle Scholar
  28. Kim K-S, Demberelnyamba D, Lee H (2004) Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir 20:556–560CrossRefGoogle Scholar
  29. Kimizuka N, Nakashima T (2001) Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels. Langmuir 17:6759–6761CrossRefGoogle Scholar
  30. Kosmulski M (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412:47–53CrossRefGoogle Scholar
  31. Krämer J, Redel E, Thomann R, Janiak C (2008) Use of ionic liquids for the synthesis of iron, ruthenium, and osnium nanoparticles from their metal carbonyl precursors. Organometallics 27:1976–1978CrossRefGoogle Scholar
  32. Kwon SG, Hyeon T (2011) Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 19:2685–2702CrossRefGoogle Scholar
  33. Lartigue L, Pflieger R, Nikitenko SI, Guari Y, Stievano L, Sougrati MT, Larionova J (2011) Autocatalytic sonolysis of iron pentacarbonyl in room temperature ionic liquid [BuMeIm][Tf2N]. Phys Chem Chem Phys 13:2111–2113CrossRefGoogle Scholar
  34. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  35. Law G, Watson PR (2001) Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 17:6138–6141CrossRefGoogle Scholar
  36. Le Caër G, Matteazzi P (1992) Mössbauer study of mechanosynthesized iron carbides. Hyperfine Interac 66:309–317CrossRefGoogle Scholar
  37. Lee DW, Yu JH, Kim BK, Jang TS (2008) Fabrication of ferromagnetic iron carbide nanoparticles by a chemical vapor condensation process. J Alloys Compd 449:60–64CrossRefGoogle Scholar
  38. Lee C-M, Jeong H-J, Lim ST, Sohn M-H, Kim DW (2010) Synthesis of iron oxide nanoparticles with control over shape using imidazolium-based ionic liquids. ACS Appl Mater Interfaces 2:756–759CrossRefGoogle Scholar
  39. Lin C-R, Chiang R-K, Wang J-S, Sung T-W (2006) Magnetic properties of monodisperse iron oxide nanoparticles. J Appl Phys 99:08N710CrossRefGoogle Scholar
  40. McEwen AB, McDevitt SF, Koch VR (1997) Differential capacitance measurements in solvent-free ionic liquids at Hg and C interfaces. J Electrochem Soc 144:3392–3397CrossRefGoogle Scholar
  41. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175CrossRefGoogle Scholar
  42. Nakashima T, Kimizuka N (2002) Vesicles in salt: formation of bilayer membranes from dialkyldimethylammonium bromides in ether-containing ionic liquids. Chem Lett 4:1018–1019CrossRefGoogle Scholar
  43. Nakashima T, Kimizuka N (2003) Interfacial synthesis of hollow TiO2 microspheres in ionic liquids. J Am Chem Soc 125:6386–6387CrossRefGoogle Scholar
  44. Park E, Zhang J, Thomson S, Ostrovski O, Howe R (2001) Characterization of phases formed in the iron carbide process by X-Ray diffraction, Mossbauer, X-Ray photoelectron spectroscopy, and Raman spectroscopy analyses. Metall Mater Trans B 32B:839–845CrossRefGoogle Scholar
  45. Redel E, Thomann R, Janiak C (2008) Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles form metal carbonyl M(CO)6 precursors. Chem Commun 15:1789–1791CrossRefGoogle Scholar
  46. Sajitha EP, Prasad V, Subramanyam SV, Mishra AK, Sarkar S, Bansal C (2007) Size-dependent magnetic properties of iron carbide nanoparticles embedded in a carbon matrix. J Phys 19:046214Google Scholar
  47. Scariot M, Silva DO, Scholten JD, Machado G, Teixeira SR, Novak M, Ebeling G, Dupont J (2008) Cobalt nanocubes in ionic liquids: synthesis and properties. Angew Chem Int Ed 47:9075–9078CrossRefGoogle Scholar
  48. Scheeren CW, Machado G, Dupont J, Fichtner PFP, Texeira SR (2003) Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Inorg Chem 42:4738–4742CrossRefGoogle Scholar
  49. Schnepp Z, Wimbush S, Antonietti M, Giordano C (2010) Synthesis of highly magnetic iron carbide via a biopolymer route. Chem Mater 22:5340–5346CrossRefGoogle Scholar
  50. Sergiienko R, Shibata E, Akase Z, Suwa H, Nakamura T, Shindo D (2006) Carbon encapsulated iron carbide nanoparticles synthesized in ethanol by an electric plasma discharge in an ultrasonic cavitation field. Mater Chem Phys 98:34–38CrossRefGoogle Scholar
  51. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Comm 23:2399–2407CrossRefGoogle Scholar
  52. Stievano L, Wagner FE (2012) In: Che M, Vedrine JC (eds) Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity, vol 1. Wiley, Weinheim, pp 407–452CrossRefGoogle Scholar
  53. Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Phil Trans R Soc A 240:599–642CrossRefGoogle Scholar
  54. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefGoogle Scholar
  55. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, New YorkGoogle Scholar
  56. Wasserscheid P, Keim W (2000) Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789CrossRefGoogle Scholar
  57. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, vol 2. Wiley, WeiheimGoogle Scholar
  58. Wei G-T, Yang Z, Lee C-Y, Yang H-Y, Wang CR (2004) Aqueous-organic phase transfer of gold nanoparticles and nanorods using an ionic liquid. J Am Chem Soc 126:5036–5037CrossRefGoogle Scholar
  59. Weissker U, Löffler M, Wolny F, Lutz M U, Scheerbaum N, Klingeler R, Gemming T, Mühl T, Leonhardt A, Büchner B (2009) Perpendicular magnetization of long iron carbide nanowires inside carbon nanotubes due to magnetocrystalline anisotropy. J Appl Phys 106: 054909/1–5Google Scholar
  60. Welton T (1999) Solvents for synthesis and catalysis. Chem Rev 99:2071–2084CrossRefGoogle Scholar
  61. Wertheim GK, Buchanan DNE (1967) Temperature dependence of the Fe57 hfs in FeF2 below the Néel temperature. Phys Rev 161:478–482CrossRefGoogle Scholar
  62. Wu A, Liu D, Tong L, Yu L, Yang HCryst (2011) Magnetic properties of nanocrystalline Fe/Fe3C composites. Cryst Eng Comm 13:876–882CrossRefGoogle Scholar
  63. Yamada Y, Yoshida H, Kobayashi Y (2010) Laser deposition of iron on graphite substrates. Hyperfine Interac 198:55–63CrossRefGoogle Scholar
  64. Ye EY, Liu BH, Fan WY (2007) Preparation of graphite-coated iron nanoparticles using pulsed laser decomposition of Fe3(CO)12 and PPh3 in hexane. Chem Mater 19:3845–3852CrossRefGoogle Scholar
  65. Yuan J, Giordano C, Antonietti M (2010) Ionic liquid monomers and polymers as precursors of highly conductive, mesoporous, graphitic carbon nanostructures. Chem Mater 22:5003–5012CrossRefGoogle Scholar
  66. Zhang GL, Yu S (1996) Nano-crystallite Fe3C with giant magnetic coercivity in SiO2. Phys Lett A 222:203–206CrossRefGoogle Scholar
  67. Zhu Y-J, Wang W–W, Qi R-J, Hu X-L (2004) Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew Chem Int Ed 43:1410–1414CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lenaïc Lartigue
    • 1
    • 4
    • 5
  • Jérôme Long
    • 1
  • Xavier Dumail
    • 1
  • Sergey I. Nikitenko
    • 2
  • Camille Cau
    • 2
  • Yannick Guari
    • 1
    Email author
  • Lorenzo Stievano
    • 3
  • Moulay T. Sougrati
    • 3
  • Christian Guérin
    • 1
  • Claudio Sangregorio
    • 4
    • 5
  • Joulia Larionova
    • 1
  1. 1.Institut Charles Gerhardt Montpellier, UMR5253, Chimie Moléculaire et Organisation du SolideUniversité Montpellier IIMontpellier Cedex5France
  2. 2.Institut de Chimie Séparative de Marcoule, UMR 5257, Centre de MarcouleBagnols sur CèzeFrance
  3. 3.Institut Charles Gerhardt Montpellier, UMR 5253, Agrégats, Interfaces et Matériaux pour l’EnergieUniversité Montpellier IIMontpellier Cedex5France
  4. 4.CNR-ISTMMilanItaly
  5. 5.INSTM Research Unit-Dip. di ChimicaUniv. di FirenzeSesto FiorentinoItaly

Personalised recommendations