Advertisement

Nanoengineering of bioactive glasses: hollow and dense nanospheres

  • Gisela M. Luz
  • João F. ManoEmail author
Research Paper

Abstract

The possibility of engineering bioactive glass (BG) nanoparticles into suitable sizes and shapes represents a significant achievement regarding the development of new osteoconductive biomaterials for therapeutic strategies to replace or regenerate damaged mineralised tissues. Herein we report the structural and chemical evolution of sol–gel derived BG nanoparticles for both the binary (SiO2:CaO (mol%) = 70:30) and ternary (SiO2:CaO:P2O5 (mol%) = 55:40:5) formulations, in order to understand how the particles formation can be directed. Hollow BG nanospheres were obtained through Ostwald ripening. The presence of a non ionic surfactant, poly(ethylene glycol) (PEG), allowed the formation of dense BG nanospheres with controllable diameters depending on the molecular weight of PEG. A deep insight into the genesis of BG nanoparticles formation is essential to design BG based materials with controlled compositions, morphologies and sizes at the nanoscale, in order to improve their performance in orthopaedic applications including bone tissue engineering.

Keywords

Bioactive glass Nanoparticles Nanoengineering Self-assembly Ostwald ripening Poly(ethylene glycol) 

Notes

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology (FCT), through project PTDC/CTM-BPC/112774/2009 and the PhD grant SFRH/BD/45777/2008.

References

  1. Branda F, Silvestri B, Luciani G, Costantini A, Tescione F (2010) Synthesis structure and stability of amino functionalized PEGylated silica nanoparticles. Colloids Surf A 367(1–3):12–16. doi: 10.1016/j.colsurfa.2010.05.036 CrossRefGoogle Scholar
  2. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6. doi: 10.1186/1477-3155-3-6 CrossRefGoogle Scholar
  3. Elgayar I, Aliev AE, Boccaccini AR, Hill RG (2005) Structural analysis of bioactive glasses. J Non-Cryst Solids 351:173–183CrossRefGoogle Scholar
  4. Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62(3):362–374. doi: 10.1016/j.addr.2009.11.008 CrossRefGoogle Scholar
  5. Fischer HC, Chan WCW (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18(6):565–571. doi: 10.1016/j.copbio.2007.11.008 CrossRefGoogle Scholar
  6. Gao G-M, Zou H-F, Liu D-R, Miao L-N, Ji G-J, Gan S-C (2009) Influence of surfactant surface coverage and aging time on physical properties of silica nanoparticlese. Colloids Surf A 350(1–3):33–37. doi: 10.1016/j.colsurfa.2009.08.030 CrossRefGoogle Scholar
  7. Hench LL (1998) Bioceramics. J Am Ceram Soc 81(7):1705–1728CrossRefGoogle Scholar
  8. Hench LL (2006) The story of Bioglass (R). J Mater Sci Mater Med 17(11):967–978. doi: 10.1007/s10856-006-0432-z CrossRefGoogle Scholar
  9. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72. doi: 10.1021/cr00099a003 CrossRefGoogle Scholar
  10. Hong Z, Merino EG, Reis RL, Mano JF (2009a) Novel rice-shaped bioactive ceramic nanoparticles. Adv Eng Mater 11(5):B25–B29. doi: 10.1002/adem.200800378 CrossRefGoogle Scholar
  11. Hong Z, Reis RL, Mano JF (2009b) Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles. J Biomed Mater Res Part A 88A(2):304–313. doi: 10.1002/jbm.a.31848 CrossRefGoogle Scholar
  12. Jell G, Stevens MM (2006) Gene activation by bioactive glasses. J Mater Sci Mater Med 17(11):997–1002. doi: 10.1007/s10856-006-0435-9 CrossRefGoogle Scholar
  13. Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27(7):964–973. doi: 10.1016/j.biomaterials.2005.07.017 CrossRefGoogle Scholar
  14. Jones JR, Lin S, Yue S, Lee PD, Hanna JV, Smith ME, Newport RJ (2010) Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Proc Inst Mech Eng [H] 224(H12):1373–1387. doi: 10.1243/09544119jeim836 Google Scholar
  15. Kulak A, Davis SA, Dujardin E, Mann S (2003) Controlled assembly of nanoparticle-containing gold and silica microspheres and silica/gold nanocomposite spheroids with complex form. Chem Mater 15(2):528–535. doi: 10.1021/cm021259e CrossRefGoogle Scholar
  16. Labbaf S, Tsigkou O, Muller KH, Stevens MM, Porter AE, Jones JR (2011) Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32(4):1010–1018CrossRefGoogle Scholar
  17. Lei B, Chen X, Wang Y, Zhao N (2009) Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres. Mater Lett 63(20):1719–1721. doi: 10.1016/j.matlet.2009.04.041 CrossRefGoogle Scholar
  18. Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass. J Mater Chem 19(9):1276–1282. doi: 10.1039/b814292k CrossRefGoogle Scholar
  19. Luz GM, Mano JF (2011) Preparation and characterization of bioactive glass nanoparticles prepared by sol-gel for biomedical application. Nanotechnology 22(49):494014Google Scholar
  20. Mukherjee R, Chakrabarti T, Anumol EA, Abinandanan TA, Ravishankar N (2011) Thermal stability of spherical nanoporous aggregates and formation of hollow structures by sintering-a phase-field study. ACS Nano 5(4):2700–2706. doi: 10.1021/nn103036q CrossRefGoogle Scholar
  21. Schultz N, Metreveli G, Franzreb M, Frimmel FH, Syldatk C (2008) Zeta potential measurement as a diagnostic tool in enzyme immobilisation. Colloids Surf B 66(1):39–44. doi: 10.1016/j.colsurfb.2008.05.004 CrossRefGoogle Scholar
  22. Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26(1):62–69CrossRefGoogle Scholar
  23. Takahashi R, Sato S, Sodesawa T, Suzuki M, Ichikuni N (2003) Ni/SiO2 prepared by sol-gel process using citric acid. Microporous Mesoporous Mater 66(2–3):197–208. doi: 10.1016/j.miromeso.2003.09.007 CrossRefGoogle Scholar
  24. Tirrell M, Kokkoli E, Biesalski M (2002) The role of surface science in bioengineered materials. Surf Sci 500(1–3):61–83. doi: 10.1016/s0039-6028(01)01548-5 CrossRefGoogle Scholar
  25. Wan Y, Zhao DY (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107(7):2821–2860. doi: 10.1021/cr068020s CrossRefGoogle Scholar
  26. Xia Y (2011) Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat Nanotechnol 6:580–587CrossRefGoogle Scholar
  27. Xu H, Yan F, Monson EE, Kopelman R (2003) Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications. J Biomed Mater Res Part A 66A(4):870–879. doi: 10.1002/jbm.a.10057 CrossRefGoogle Scholar
  28. Yang HG, Zeng HC (2004) Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J Phys Chem B 108(11):3492–3495. doi: 10.1021/jp0377782 CrossRefGoogle Scholar
  29. Ye TN, Dong ZH, Zhao YN, Yu JG, Wang FQ, Guo SK, Zou YC (2011) Controllable synthesis and photoluminescence of single-crystalline BaHfO(3) hollow micro- and nanospheres. Langmuir 27(14):8878–8884. doi: 10.1021/la201749z CrossRefGoogle Scholar
  30. Zeng HC (2006) Synthetic architecture of interior space for inorganic nanostructures. J Mater Chem 16(7):649–662. doi: 10.1039/b511296f CrossRefGoogle Scholar
  31. Zeng HC (2007) Ostwald ripening: a synthetic approach for hollow nanomaterials. Curr Nanosci 3(2):177–181CrossRefGoogle Scholar
  32. Zhao Y, Lin L-N, Lu Y, Chen S-F, Dong L, Yu S-H (2010) Templating synthesis of preloaded doxorubicin in hollow mesoporous silica nanospheres for biomedical applications. Adv Mater 22(46):5255–5259. doi: 10.1002/adma.201002395 CrossRefGoogle Scholar
  33. Zheng W, He L, Liang J, Chang G, Wang N (2010) Preparation and properties of core-shell nanosilica/poly(methyl methacrylate-butyl acrylate-2,2,2-trifluoroethyl methacrylate) latex. J Appl Polym Sci 120(2):1152–1161. doi: 10.1002/app.33000 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.3B’s Research Group, Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineTaipasPortugal
  2. 2.ICVS/3B’s Associated LaboratoryBragaPortugal

Personalised recommendations