CuO role in γ-Fe2O3-supported Pt–Cu bimetallic nanoparticles synthesized by radiation-induced reduction as catalysts for preferential CO oxidation

  • Toshiharu Moriya
  • Junichiro Kugai
  • Satoshi Seino
  • Yuji Ohkubo
  • Takashi Nakagawa
  • Hiroaki Nitani
  • Takao A. Yamamoto
Brief Communication

Abstract

Modification of supported Pt catalyst by transition metal is effective for improving catalytic performance in fuel processing and electrochemical processes. In order to identify the role of CuO in Pt–Cu bimetallic nanoparticle catalyst in CO preferential oxidation in H2-rich gas, three γ-Fe2O3-supported Pt–Cu catalyst samples consisting of Pt–Cu alloy with different CuO content were synthesized by a radiolytic process. By managing the concentrations of the copper source and oxygen dissolved in the precursor solution, the CuO content was successfully varied by an order of magnitude without changing the structure and composition of the Pt–Cu alloy. In the catalytic tests, CuO-promoted CO oxidation significantly at around 100 °C. The catalyst with the highest CuO content showed the highest CO and O2 conversions. It was considered that the CuO phase promotes oxygen supply to CO chemisorbed on the Pt–Cu alloy surface. The alloy-CuO contact was suggested to be critical for the promoting effect.

Keywords

Pt–Cu Bimetallic composite Radiolytic synthesis Preferential CO oxidation PROX 

Notes

Acknowledgments

The authors thank Mr. K. Ueno (EBIS, Japan) for the provision of beam time of the electron accelerator and Dr. T. Akita (Advanced Industrial Science and Technology, Tsukuba) for TEM analysis. This research was partially supported by a Grant-in-Aid for Scientific Research (No. 22241023) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by the R&D Project for Regional Innovation (No. 22U5009) from the Ministry of Economy, Trade and Industry.

References

  1. Ayastuy JL, Gonzalez-Marcos MP, Gonzalez-Velasco JR, Gutierrez-Ortiz MA (2007) MnOx/Pt/Al2O3 catalysts for CO oxidation in H-2-rich streams. Appl Catal B Environ 70(1–4):532–541. doi: 10.1016/j.apcatb.2006.01.028 CrossRefGoogle Scholar
  2. Belloni J (2006) Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal Today 113(3–4):141–156. doi: 10.1016/j.cattod.2005.11.082 CrossRefGoogle Scholar
  3. Dudfield CD, Chen R, Adcock PL (2001) A carbon monoxide PROX reactor for PEM fuel cell automotive application. Int J Hydrogen Energy 26(7):763–775. doi: 10.1016/s0360-3199(00)00131-2 CrossRefGoogle Scholar
  4. Echigo M, Tabata T (2003) A study of CO removal on an activated Ru catalyst for polymer electrolyte fuel cell applications. Appl Catal A-Gen 251(1):157–166. doi: 10.1016/s0926-860x(03)00325-9 CrossRefGoogle Scholar
  5. Kahlich MJ, Gasteiger HA, Behm RJ (1997) Kinetics of the selective CO oxidation in H-2-rich gas on Pt/Al2O3. J Catal 171(1):93–105. doi: 10.1006/jcat.1997.1781 CrossRefGoogle Scholar
  6. Komatsu T, Tamura A (2008) Pt3Co and PtCu intermetallic compounds: promising catalysts for preferential oxidation of CO in excess hydrogen. J Catal 258(2):306–314. doi: 10.1016/j.jcat.2008.06.030 CrossRefGoogle Scholar
  7. Kotobuki M, Watanabe A, Uchida H, Yamashita H, Watanabe M (2006) High catalytic performance of Pt-Fe alloy nanoparticles supported in mordenite pores for preferential CO oxidation in H-2-rich gas. Appl Catal A-Gen 307(2):275–283. doi: 10.1016/j.apcata.2006.04.003 CrossRefGoogle Scholar
  8. Kugai J, Kitagawa R, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Daimon H, Yamamoto TA (2011) Gamma-Fe2O3-supported Pt-Cu nanoparticles synthesized by radiolytic process for catalytic CO preferential oxidation. Appl Catal A-Gen 406(1–2):43–50. doi: 10.1016/j.apcata.2011.08.006 CrossRefGoogle Scholar
  9. Kugai J, Moriya T, Seino S, Nakagawa T, Ohkubo Y, Nitani H, Daimon H, Yamamoto TA (2012) CeO2-supported Pt–Cu alloy nanoparticles synthesized by radiolytic process for highly selective CO oxidation. Int J Hydrogen Energy 37(6):4787–4797. doi: 10.1016/j.ijhydene.2011.12.070 CrossRefGoogle Scholar
  10. Lemons RA (1990) Fuel-cells for transportation. J Power Sources 29(1–2):251–264. doi: 10.1016/0378-7753(90)80024-8 CrossRefGoogle Scholar
  11. Lewera A, Zhou WP, Hunger R, Jaegermann W, Wieckowski A, Yockel S, Bagus PS (2007) Core-level binding energy shifts in Pt–Ru nanoparticles: a puzzle resolved. Chem Phys Lett 447(1–3):39–43. doi: 10.1016/j.cplett.2007.08.068 CrossRefGoogle Scholar
  12. Liu XS, Korotkikh O, Farrauto R (2002) Selective catalytic oxidation of CO in H-2: structural study of Fe oxide-promoted Pt/alumina catalyst. Appl Catal A-Gen 226(1–2):293–303Google Scholar
  13. Liu XY, Wang AQ, Li L, Zhang T, Mou CY, Lee JF (2011) Structural changes of Au-Cu bimetallic catalysts in CO oxidation: in situ XRD, EPR, XANES, and FT-IR characterizations. J Catal 278(2):288–296. doi: 10.1016/j.jcat.2010.12.016 CrossRefGoogle Scholar
  14. Manasilp A, Gulari E (2002) Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl Catal B Environ 37(1):17–25. doi: 10.1016/s0926-3373(01)00319-8 CrossRefGoogle Scholar
  15. Marignier JL, Belloni J, Delcourt MO, Chevalier JP (1985) Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction. Nature 317(6035):344–345. doi: 10.1038/317344a0 CrossRefGoogle Scholar
  16. Nitani H, Nakagawa T, Daimon H, Kurobe Y, Ono T, Honda Y, Koizumi A, Seino S, Yamamoto TA (2007) Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles. Appl Catal A-Gen 326(2):194–201. doi: 10.1016/j.apcata.2007.04.018 CrossRefGoogle Scholar
  17. Oh SH, Sinkevitch RM (1993) Carbon-monoxide removal from hydrogen-rich fuel-cell feedstreams by selective catalytic-oxidation. J Catal 142(1):254–262. doi: 10.1006/jcat.1993.1205 CrossRefGoogle Scholar
  18. Seino S, Kinoshita T, Otome Y, Okitsu K, Nakagawa T, Yamamoto TA (2003) Magnetic composite nanoparticle of Au/gamma-Fe2O3 synthesized by gamma-ray irradiation. Chem Lett 32(8):690–691CrossRefGoogle Scholar
  19. Seino S, Kinoshita T, Nakagawa T, Kojima T, Taniguci R, Okuda S, Yamamoto TA (2008) Radiation induced synthesis of gold/iron-oxide composite nanoparticles using high-energy electron beam. J Nanopart Res 10(6):1071–1076. doi: 10.1007/s11051-007-9334-3 CrossRefGoogle Scholar
  20. Springer TE, Rockward T, Zawodzinski TA, Gottesfeld S (2001) Model for polymer electrolyte fuel cell operation on reformate feed—effects of CO, H-2 dilution, and high fuel utilization. J Electrochem Soc 148(1):A11–A23. doi: 10.1149/1.1344516 CrossRefGoogle Scholar
  21. Tanaka K, Moro-oka Y, Ishigure K, Yajima T, Okabe Y, Kato Y, Hamano H, Sekiya S, Tanaka H, Matsumoto Y, Koinuma H, He H, Zhang CB, Feng QC (2004) A new catalyst for selective oxidation of CO in H-2: part 1, activation by depositing a large amount of FeOx on Pt/Al2O3 and Pt/CeO2 catalysts. Catal Lett 92(3–4):115–121. doi: 10.1023/B:CATL.0000014333.84509.1a CrossRefGoogle Scholar
  22. Tomita A, Shimizu K, Kato K, Tai Y (2012) Pt/Fe-containing alumina catalysts prepared and treated with water under moderate conditions exhibit low-temperature CO oxidation activity. Catal Commun 17:194–199. doi: 10.1016/j.catcom.2011.11.007 CrossRefGoogle Scholar
  23. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms. 2. Enhancement of oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60(3):267–273. doi: 10.1016/s0022-0728(75)80261-0 CrossRefGoogle Scholar
  24. Woods RJ, Pikaev AK (1993) Applied radiation chemistry: radiation processing. Wiley, New YorkGoogle Scholar
  25. Yamamoto TA, Nakagawa T, Seino S, Nitani H (2010) Bimetallic nanoparticles of PtM (M = Au, Cu, Ni) supported on iron oxide: radiolytic synthesis and CO oxidation catalysis. Appl Catal A Gen 387(1–2):195–202. doi: 10.1016/j.apcata.2010.08.020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Toshiharu Moriya
    • 1
  • Junichiro Kugai
    • 1
  • Satoshi Seino
    • 1
  • Yuji Ohkubo
    • 1
  • Takashi Nakagawa
    • 1
  • Hiroaki Nitani
    • 2
  • Takao A. Yamamoto
    • 1
  1. 1.Graduate School of EngineeringOsaka UniversitySuita, OsakaJapan
  2. 2.Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)Tsukuba, IbarakiJapan

Personalised recommendations