Advertisement

Effects of TiO2 nanoparticles on the NO2 levels in cell culture media analysed by Griess colorimetric methods

  • Traian Popescu
  • Andreea R. Lupu
  • Lucian Diamandescu
  • Doina Tarabasanu-Mihaila
  • Valentin S. Teodorescu
  • Valentin Raditoiu
  • Violeta Purcar
  • Aurel M. Vlaicu
Research Paper

Abstract

The Griess assay has been used to determine the possible changes in the measured NO2 concentrations induced by TiO2 nanoparticles in three types of nitrite-containing samples: aqueous NaNO2 solutions with known concentrations, and two types of cell culture media—Roswell Park Memorial Institute medium (RPMI-1640) and Dulbecco’s Modified Eagle Medium (DMEM-F12) used either as delivered or enriched in NO2 by NaNO2 addition. We have used three types of titania with average particle sizes between 10 and 30 nm: Degussa P25 and two other samples (undoped and Fe3+-doped anatase TiO2) synthesised by a hydrothermal route in our laboratory. The structural, morphological, optical and physicochemical characteristics of the used materials have been studied by X-ray diffraction, transmission electron microscopy (EDX), Mössbauer spectroscopy, Brunauer–Emmett–Teller nitrogen adsorption, UV–Vis reflectance spectroscopy, dynamic light scattering and diffuse reflectance infrared Fourier transform spectroscopy. The opacity and sedimentation behaviour of the studied TiO2 suspensions have been investigated by photometric attenuance measurements at 540 nm. To account for the photocatalytic properties of titania in a biologically relevant context, multiple Griess tests have been performed under controlled exposure to laboratory natural daylight illumination. The results show significant variations of light attenuance (associated with NO2 concentrations in the Griess test) depending on the opacity, sedimentation behaviour, NO2 adsorption and photocatalytic properties of the tested TiO2 nanomaterials. These findings identify material characteristics recommended to be considered when analysing the results of Griess tests performed in biological studies involving TiO2 nanoparticles.

Keywords

Griess assay Nitric oxide production TiO2 nanoparticles Cell activation 

Notes

Acknowledgments

This paper is supported by the Sectorial Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number SOP HRD/107/1.5/S/82514 and by the European Social Fund and University of Bucharest, in the frame of the Project POSDRU/89/1.5/S/58852 “Postdoctoral programme for researcher formation in science” (Sectorial Operational Programme for the Development of Human Resources 2007–2013). The support of the Romanian National Authority for Scientific Research, under the Core project PN09-450102, is greatly acknowledged. The authors wish to thank Dr. Dana Culita for the BET experiments.

References

  1. Afanas’ev AM, Gorobchenko VD (1974) Shape of Mössbauer spectra in the fast relaxation limit. Zh. Eksp. Teor. Fiz. 66:1406; Report IAE-2215 Moscow 1972Google Scholar
  2. Baltrusaitis J, Schuttlefield J, Zeitler E, Grassian VH (2011) Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem Eng J 170:471–481CrossRefGoogle Scholar
  3. Barb D, Diamandescu L, Tarabasanu D (1976) On the lineshape of spin relaxation broadened Mössbauer spectra of solid potassium trioxalatoferrate. J Phys C6:113Google Scholar
  4. Bian K, Harari Y, Zhong M (2001) Down-regulation of inducible nitric-oxide synthase (NOS-2) during parasite-induced gut inflammation: a path to identify a selective NOS-2 inhibitor. Mol Pharmacol 59(4):939–947Google Scholar
  5. Burdelya L, Kujawski M, Niu G, Zhong B, Wang T, Zhang S, Kortylewski M, Shain K, Kay H, Djeu J, Dalton W, Pardoll D, Wei S, Yu H (2005) Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects. J Immunol 174(7):3925–3931Google Scholar
  6. Canesi L, Ciacci C, Vallotto D, Gallo G, Marcomini A, Pojana G (2010) In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat Toxicol 96(2):151–158CrossRefGoogle Scholar
  7. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRefGoogle Scholar
  8. Chamberlain LM, Brammer KS, Johnston GW, Chien S, Jin S (2011) Macrophage inflammatory response to TiO2 nanotube surfaces. J Biomater Nanobiotechnol 2:293–300CrossRefGoogle Scholar
  9. Chang JA, Vithal M, Baek IC, Seok SI (2009) Morphological and phase evolution of TiO2 nanocrystals prepared from peroxotitanate complex aqueous solution: influence of acetic acid. J Solid State Chem 182:749–756CrossRefGoogle Scholar
  10. Chen S, Cao G (2006) Study on the photocatalytic oxidation of NO2 ions using TiO2 beads as a photocatalyst. Desalination 194:127–134CrossRefGoogle Scholar
  11. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRefGoogle Scholar
  12. Choi EM, Hwang J-K (2004) Effects of methanolic extract and fractions from Listea cubeba bark on the production of inflammatory mediators in RAW 264.7 cells. Fitoterapia 75:141–148CrossRefGoogle Scholar
  13. Ciacci C, Canonico B, Bilaniĉovă D, Fabbri R, Cortese K et al (2012) Immunomodulation by different types of N-Oxides in the hemocytes of the Marine Bivalve Mytilus galloprovincialis. PLoS ONE 7(5):e36937CrossRefGoogle Scholar
  14. Diamandescu L, Vasiliu F, Tarabasanu-Mihaila D, Feder M, Vlaicu AM, Teodorescu CM, Macovei D, Enculescu I, Parvulescu V, Vasile E (2008) Structural and photocatalytic properties of iron-and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions. Mater Chem Phys 112(1):146–153CrossRefGoogle Scholar
  15. Ding X, An T, Li G, Zhang S, Chen J et al (2008) Preparation and characterization of hydrophobic TiO2 pillared clay: the effect of acid hydrolysis catalyst and doped Pt amount on photocatalytic activity. J Colloid Interface Sci 320:501–507CrossRefGoogle Scholar
  16. EL-Sharkawy NI, Hamza SM, Abou-Zeid EH (2010) Toxic impact of titanium dioxide (TiO2) in male albino rats with special reference to its effect on reproductive system. J Am Sci 6(11):865–872Google Scholar
  17. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21CrossRefGoogle Scholar
  18. George S, Pokhrel S, Ji Z, Henderson BL, Xia T, Li L, Zink JI, Nel AE, Mädler L (2011) Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc 133(29):11270–11278CrossRefGoogle Scholar
  19. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Champman and Hall Ltd, LondonCrossRefGoogle Scholar
  20. Han M, Wen JK, Zheng B, Zhang DQ (2004) Acetylbritannilatone suppresses NO and PGE2 synthesis in RAW 264.7 macrophages through the inhibition of iNOS and COX-2 gene expression. Life Sci 75:675–684CrossRefGoogle Scholar
  21. Han W, Wang YD, Zheng YF (2008) In vitro biocompatibility study of nano TiO2 materials. Adv Mater Res 47–50:1438–1441CrossRefGoogle Scholar
  22. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12):8269–8285CrossRefGoogle Scholar
  23. Hoffmann MR, Martin ST, Choi W, Bahnemann D (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  24. Hsiao I-L, Huang Y-J (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci Total Environ 409:1219–1228CrossRefGoogle Scholar
  25. Jang HD, Kim S-K, Kim S-J (2001) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 3(2–3):141–147CrossRefGoogle Scholar
  26. Ji Z, Jin X, George S, Xia T, Meng H, Wang X, Suarez E, Zhang H, Hoek EMV, Godwin H, Nel AE, Zink JI (2010) Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44(19):7309–7314CrossRefGoogle Scholar
  27. Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ (2011) Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141(1–3):3–15CrossRefGoogle Scholar
  28. Kaneko K (1994) Determination of pore size and pore size distribution 1. Adsorbents and catalysts. J Membr Sci 96:59–89CrossRefGoogle Scholar
  29. Kang M, Lee S-Y, Chung C-H, Cho SM, Han GY, Kim B-W, Yoon KJ (2001) Characterization of a TiO2 photocatalyst synthesized by the solvothermal method and its catalytic performance for CHCl3 decomposition. J Photochem Photobiol A 144:185–191CrossRefGoogle Scholar
  30. Kazantsev RV, Gaidai NA, Nekrasov NV, Tenchev K, Petrov L, Lapidus AL (2003) Kinetics of benzene and toluene hydrogenation on a Pt/TiO2 catalyst. Kinet Catal 44(4):529–535CrossRefGoogle Scholar
  31. Kim YH, Kim KS, Kwak NJ, Lee KH, Kweon SA, Lim Y (2003) Cytotoxicity of yellow sand in lung epithelial cells. J Biosci 28:77–81CrossRefGoogle Scholar
  32. Ko S, Fleming PD, Joyce M, Ari-Gur P (2012) Optical and photocatalytic properties of photoactive paper with polycrystalline TiO2 nanopigment for optimal product design. Tappi J 11(5):33–38Google Scholar
  33. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations; a review. Appl Catal B 49:1–14CrossRefGoogle Scholar
  34. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115(46):13211–13241CrossRefGoogle Scholar
  35. Kumar PM, Badrinarayanan S, Sastry M (2000) Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358:122–130CrossRefGoogle Scholar
  36. Kwon S, Fan M, Cooper AT, Yang H (2008) Photocatalytic applications of micro- and nano-TiO2 in environmental engineering. Crit Rev Environ Sci Technol 38(3):197–226CrossRefGoogle Scholar
  37. Lee SH, Seo GS, Sohn DH (2004) Inhibition of lipopolysaccharide-induced expression of inducible nitric oxide synthase by butein in RAW264.7 cells. Biochem Biophys Commun 323:125–132CrossRefGoogle Scholar
  38. Li XY, Gilmour PS, Donaldson K, MacNee W (1997) In vivo and in vitro proinflammatory effects of particulate air pollution (PM10). Environ Health Perspect 105(5):1279–1283CrossRefGoogle Scholar
  39. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  40. Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV, Veronesi B (2007) Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 115(11):1631–1637CrossRefGoogle Scholar
  41. Lu N, Zhu Z, Zhao X, Tao R, Yang X, Gao Z (2008) Nano titanium dioxide photocatalytic protein tyrosine nitration: a potential hazard of TiO2 on skin. Biochem Biophys Res Commun 370:675–680CrossRefGoogle Scholar
  42. Lydakis-Simantiris N, Riga D, Katsivela E, Mantzavinos D, Xekoukoulotakis NP (2010) Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis. Desalination 250:351–355CrossRefGoogle Scholar
  43. Maira AJ, Coronado JM, Augugliaro V, Yeung KL, Conesa JC, Soria J (2001) Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. J Catal 202:413–420CrossRefGoogle Scholar
  44. Martra G (2000) Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour. Appl Catal A 200:275–285CrossRefGoogle Scholar
  45. Montiel-Dávalos A, Ventura-Gallegos JL, Alfaro-Moreno E, Soria-Castro E, García-Latorre E, Cabañas-Moreno JG, Ramos-Godinez MP, López-Marure R (2012) TiO2 nanoparticles induce dysfunction and activation of human endothelial cells. Chem Res Toxicol 25(4):920–930CrossRefGoogle Scholar
  46. Mozia S, Borowiak-Pale′n E, Przepiórski J, Grzmil B, Tsumura T, Toyoda M, Grzechulska-Damszel J, Morawski AW (2010) Physico-chemical properties and possible photocatalytic applications of titanate nanotubes synthesized via hydrothermal method. J Phys Chem Solids 71(3):263CrossRefGoogle Scholar
  47. Murashkevich AN, Lavitskaya AS, Barannikova TI, Zharskii IM (2008) Infrared absorption spectra and structure of TiO2-SiO2 composites. J Appl Spectrosc 75(5):730–734CrossRefGoogle Scholar
  48. Navio JA, Colon G, Trillas MJJ (1998) Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method. Appl Catal B Environ 16:187–196CrossRefGoogle Scholar
  49. Nolan NT, Seery MK, Pillai SC (2009) Spectroscopic investigation of the Anatase-to-Rutile transformation of sol-gel synthesized TiO2 photocatalysts. J Phys Chem C 113(36):16151–16157CrossRefGoogle Scholar
  50. Nüesch F, Moser JE, Shklover V, Grätzel M (1996) Merocyanine aggregation in mesoporous networks. J Am Chem Soc 118:5420–5431CrossRefGoogle Scholar
  51. Onuma K, Sato Y, Ogawara S, Shirasawa N, Kobayashi M, Yoshitake J, Yoshimura T, Iigo M, Fujii J, Okada F (2009) Nano-scaled particles of titanium dioxide convert benign mouse fibrosarcoma cells into aggressive tumor cells. Am J Pathol 175(5):2171–2183CrossRefGoogle Scholar
  52. Othman SH, Rashid SA, Ghazi TIM, Abdullah N (2011) Fe-Doped TiO2 nanoparticles produced via MOCVD: synthesis, characterization, and photocatalytic activity. J Nanomater. doi:  10.1155/2011/571601
  53. Raja KJA, Shanmugam R, Mahalakshmi R, Viswanathan B (2010) XPS and IR spectral studies on the structure of phosphate and sulphate modified titania-A combined DFT and experimental study. Indian J Chem 49A:9–17Google Scholar
  54. Rengifo-Herrera JA, Kiwi J, Pulgarin C (2009) N, S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation. J Photochem Photobiol A 205:109–115CrossRefGoogle Scholar
  55. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82CrossRefGoogle Scholar
  56. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185CrossRefGoogle Scholar
  57. Shibata H, Noda N, Ogura Y, Sogabe K, Sawa Y (2000) Oxidation and reduction of nitrite ion in the TiO2 photo-induced catalytic reaction. Biosci Biotechnol Biochem 64(8):1751–1753CrossRefGoogle Scholar
  58. Sun J, Zhang X, Broderick M, Fein H (2003) Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 3:276–284CrossRefGoogle Scholar
  59. Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:27Google Scholar
  60. Tseng I-H, Watson SS, Sung L-P (2011) Characterizing the dynamic behavior of nano-TiO2 agglomerates in suspensions by photocorrelation spectroscopy. J Nanopart Res 13(5):2195–2204CrossRefGoogle Scholar
  61. Venketaraman V, Talaue MT, Dayaram YK, Peteroy-Kelly MA, Bu W, Connel ND (2003) Nitric oxide regulation of l-arginine uptake in murine and human macrophages. Tuberculosis 83:311–318CrossRefGoogle Scholar
  62. Wadhwa S, Rea C, O’Hare P, Mathur A, Roy SS, Dunlop PSM, Byrne JA, Burke G, Meenan B, McLaughlin JA (2011) Comparative in vitro cytotoxicity study of carbon nanotubes and titania nanostructures on human lung epithelial cells. J Hazard Mater 191:56–61CrossRefGoogle Scholar
  63. Watson S, Beydoun D, Scott J, Amal R (2004) Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J Nanopart Res 6(2):193–207CrossRefGoogle Scholar
  64. Zhang F, Jin RL, Chen JX, Shao C, Gao WL, Li L, Guan NJ (2005) High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. J Catal 232:424–431CrossRefGoogle Scholar
  65. Zhou Y, Weng Y, Zhang L, Jing F, Huang N, Chen J (2011) Cystamine immobilization on TiO2 film surfaces and the influence on inhibition of collagen-induced platelet activation. Appl Surf Sci 258(5):1776–1783CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Traian Popescu
    • 1
    • 2
  • Andreea R. Lupu
    • 3
  • Lucian Diamandescu
    • 1
  • Doina Tarabasanu-Mihaila
    • 1
  • Valentin S. Teodorescu
    • 1
  • Valentin Raditoiu
    • 4
  • Violeta Purcar
    • 4
  • Aurel M. Vlaicu
    • 1
  1. 1.National Institute of Materials PhysicsBucharest, MagureleRomania
  2. 2.Faculty of PhysicsUniversity of BucharestBucharestRomania
  3. 3.Faculty of BiologyUniversity of BucharestBucharestRomania
  4. 4.National Research and Development Institute for Chemistry and Petrochemistry (ICECHIM)BucharestRomania

Personalised recommendations