Advertisement

Cold plasma synthesis of high quality organic nanoparticles at atmospheric pressure

  • N. RadacsiEmail author
  • A. E. D. M. van der Heijden
  • A. I. Stankiewicz
  • J. H. ter Horst
Research Paper

Abstract

Atmospheric pressure cold surface dielectric barrier discharge (SDBD) plasma was used for the first time to produce nano-sized organic crystals. Nano-sized particles can have beneficial product properties, such as improved internal quality and dissolution rate, compared to conventionally sized crystalline products. In cold plasma crystallization a nebulizer system sprays the solution aerosol into the plasma with the help of a carrier gas. The plasma heats and charges the droplets causing solvent evaporation and coulomb fission to occur, after which nucleation and crystal growth commence within the small, confined volume offered by the small droplets. As a result nano-sized crystals are produced. The operation conditions of SDBD plasma to produce nano-sized crystals of the energetic material RDX were determined by scanning electron microscopy, and the product was investigated with X-ray powder diffraction and sensitivity tests. The sensitivity tests indicated that the nano-sized product had reduced sensitivity for friction, indicating a higher internal quality of the crystalline product.

Keywords

Nanoparticle synthesis Cold plasma Atmospheric plasma Dielectric barrier discharge RDX Crystallization Nanocrystal 

Notes

Acknowledgments

The authors would like to thank Willem Duvalois and Emile van Veldhoven for the SEM analysis and Ruud Hendrikx for the XRD analysis. Furthermore, the authors would like to thank Yves Creyghton and Marcel Simor for the technical discussions.

References

  1. Eliasson B, Kogelschatz U (1991) Nonequilibrium volume plasma chemical processing. IEEE Trans Plasma Sci 19:1063–1077CrossRefGoogle Scholar
  2. Gibalov VI, Pietsch GJ (2000) The Development of dielectric barrier discharges in gas gaps and on surfaces. J Phys D Appl Phys 33:2618–2626CrossRefGoogle Scholar
  3. Gundlach R W (2002) February 19 DC biased AC corona charging. U.S. Patent 6,349,024Google Scholar
  4. Han J, Su H, Xu J, Song W, Gu Y, Chen Y, Moon W-J, Zhang D (2012) Silk-mediated synthesis and modification of photoluminescent ZnO nanoparticles. J Nanopart Res 14:726CrossRefGoogle Scholar
  5. Harris J (1976) Autoignition temperatures of military high explosives by differential thermal analysis. Thermochim Acta 14:183–199CrossRefGoogle Scholar
  6. Karpowicz RJ, Sergio ST, Brill TB (1983) β-polymorph of hexahydro-1,3,5-trinitro-s-triazine. A Fourier transform infrared spectroscopy study of an energetic material. Ind Eng Chem Prod Res Dev 22:363–365CrossRefGoogle Scholar
  7. Kim J-W, Shin M-S, Kim J-K, Kim H-S, Koo K–K (2011) Evaporation crystallization of RDX by ultrasonic spray. Ind Eng Chem Res 50:12186–12193CrossRefGoogle Scholar
  8. Kobayashi T, Fujiyoshi Y, Ueda N (1982) The observation of molecular orientations in crystal defects and the growth mechanism of thin phthalocyanine films. Acta Cryst A38:356–362Google Scholar
  9. Kogelschatz U, Eliasson B, Egli W (1999) From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure Appl Chem 71:1819–1828CrossRefGoogle Scholar
  10. Lord Rayleigh JWS (1882) On the equilibrium of liquid conducting masses charged with electricity. Phil Mag 14:184–186Google Scholar
  11. Masuda S, Akutsu K, Kuroda M, Awatsu Y, Shibuya Y (1988) A ceramic-based ozonizer using high frequency discharge. IEEE Trans Ind Appl 24:223–231CrossRefGoogle Scholar
  12. May KR (1973) The collison nebulizer: description, performance and application. J Aerosol Sci 4:235–241CrossRefGoogle Scholar
  13. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Non-thermal plasma treatment of textiles. Surf Coat Technol 202:3427–3449CrossRefGoogle Scholar
  14. Mullin JW (2001) Crystallization, 4th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  15. Racles C, Stoica I, Doroftei F, Cozan V (2011) A simple method for the preparation of colloidal polymer-supported silver nanoparticles. J Nanopart Res 13:6971–6980CrossRefGoogle Scholar
  16. Radacsi N, Stankiewicz AI, Creyghton YLM, van der Heijden AEDM, ter Horst JH (2011) Electrospray crystallization for high-quality submicron-sized crystals. Chem Eng Technol 34:24–30CrossRefGoogle Scholar
  17. Rahel J, Simor M, Cernak M, Stefecka M, Imahori Y, Kando M (2003) Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge. Surf Coat Technol 169:604–608CrossRefGoogle Scholar
  18. Rao N, Micheel B, Hansen D, Fandrey C, Bench M, Girshick S, Heberlein J, McMurry P (1995) Nanoparticle formation using a plasma expansion process. Plasma Chem Plasma Process 15:581–606CrossRefGoogle Scholar
  19. Revalor E, Hammadi Z, Astier JP, Grossier R, Garcia E, Hoff C, Furuta K, Okutsu T, Morin R, Veesler S (2010) Usual and unusual crystallization from solution. J Cryst Growth 312:939–946CrossRefGoogle Scholar
  20. Rhodes M (2008) Introduction to particle technology, 2nd edn. Wiley, West Sussex, pp 247–248CrossRefGoogle Scholar
  21. Salge J (1996) Plasma-assisted deposition at atmospheric pressure. Surf Coat Technol 80:1–7CrossRefGoogle Scholar
  22. Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26:1685–1694CrossRefGoogle Scholar
  23. Stepanov V, Krasnoperov LN, Elkina IB, Zhang X (2005) Production of nanocrystalline RDX by rapid expansion of supercritical solutions. Propell Explos Pyrotech 30:178–183CrossRefGoogle Scholar
  24. Suzuki K, Matsumoto H, Minagawa M, Kimura M, Tanioka A (2007) Preparation of carbon fiber fabrics from phenolic resin by electrospray deposition. Polym J 39:1128–1134CrossRefGoogle Scholar
  25. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009) Generation of nanoparticles by spark discharge. J Nanopart Res 11:315–332CrossRefGoogle Scholar
  26. UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, 4th rev. edn. (2004) United Nations, New York and GenevaGoogle Scholar
  27. Vons V, Creyghton Y, Schmidt-Ott A (2006) Nanoparticle production using atmospheric pressure cold plasma. J Nanopart Res 8:721–728CrossRefGoogle Scholar
  28. Xu X (2001) Dielectric barrier discharge—properties and applications. Thin Solid Films 390:237–242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • N. Radacsi
    • 1
    Email author
  • A. E. D. M. van der Heijden
    • 1
    • 2
  • A. I. Stankiewicz
    • 1
  • J. H. ter Horst
    • 1
  1. 1.Process & Energy DepartmentDelft University of TechnologyDelftThe Netherlands
  2. 2.Technical SciencesTNORijswijkThe Netherlands

Personalised recommendations