Amorphous dysprosium carbonate: characterization, stability, and crystallization pathways

  • Beatriz Vallina
  • Juan Diego Rodriguez-Blanco
  • Andrew P. Brown
  • Jesus A. Blanco
  • Liane G. BenningEmail author
Research Paper


The crystallization of amorphous dysprosium carbonate (ADC) has been studied in air (21–750 °C) and in solution (21–250 °C). This poorly ordered precursor, Dy2(CO3)3·4H2O, was synthesized in solution at ambient temperature. Its properties and crystallization pathways were studied by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy, thermogravimetric analysis, and magnetic techniques. ADC consists of highly hydrated spherical nanoparticles of 10–20 nm diameter that are exceptionally stable under dry treatment at ambient and high temperatures (<550 °C). However, ADC transforms in solution to a variety of Dy-carbonates, depending on the temperature and reaction times. The transformation sequence is (a) poorly crystalline metastable tengerite-type phase, Dy2(CO3)3·2–3H2O; and (b) the orthorhombic kozoite-type phase DyCO3(OH) at 165 °C after prolonged times (15 days) or faster (12 h) at 220 °C. Both the amorphous phase and the kozoite-type phase DyCO3(OH) are paramagnetic in the range of temperatures measured from 1.8 to 300 K.


Amorphous materials Rare earths Dysprosium Carbonate Crystallization 



This research was supported by the Marie Curie EU-FP6 MINGRO Research and Training Network under contract MRTNCT-2006-035488. The authors would like to thank the Cohen Laboratories in the School of Earth and Environment, the Leeds Electron Microscopy and Spectroscopy Centre (LEMAS) at the Faculty of Engineering (University of Leeds), and the Spanish Ministry of Science and Innovation (MICINN-12-MAT2011-27573-C04-02). The help of Imanol De Pedro del Valle with the magnetic measurements from the University of Cantabria (Spain) is acknowledged.

Supplementary material

11051_2013_1438_MOESM1_ESM.pdf (261 kb)
Supplementary material 1 (PDF 260 kb)


  1. Adachi GY, Imanaka N, Tamura S (2010) Research trends in rare earths: a preliminary analysis. J Rare Earth 28:843–846. doi: 10.1016/S1002-0721(09)60207-6 CrossRefGoogle Scholar
  2. Annis BK, Hahn RL, Narten AH (1985) Hydration of the Dy3+ ion in dysprosium chloride solutions determined by neutron diffraction. J Chem Phys 82:2086–2091. doi: 10.1063/1.448345 CrossRefGoogle Scholar
  3. Bauer D, Diamond D, Li J, McKittrick M, Sandalow D, Telleen P (2011) Critical Materials Strategy. US Department of Energy. Washington DC, 2011.
  4. Blanco JA, Gignoux D, Schmitt D (1992) Crystal field and magnetic properties of the tetragonal TbNi2Si2 compound. Z Phys B Condens. Matter 89:343–350. doi: 10.1007/BF01318166 CrossRefGoogle Scholar
  5. Bolze J, Peng B, Dingenouts N, Panine P, Narayanan T, Ballauff M (2002) Formation and growth of amorphous colloidal CaCO3 precursor particles as detected by time-resolved SAXS. Langmuir 18:8364–8369. doi: 10.1021/la025918d CrossRefGoogle Scholar
  6. Bots P, Rodriguez-Blanco JD, Roncal-Herrero T, Shaw S, Benning LG (2012) Mechanistic insights into the crystallization of amorphous calcium carbonate to vaterite. Cryst Growth Des 12:3806–3814. Google Scholar
  7. Brečević L, Nielsen AE (1989) Solutility of amorphous calcium carbonate. J Cryst Growth 98:504–510. doi: 10.1016/0022-0248(89)90168-1 CrossRefGoogle Scholar
  8. Bünzli JCG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077. doi: 10.1039/b406082m CrossRefGoogle Scholar
  9. Buschow KHJ (1984) Amorphous alloys. In: Gschneidner KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 7. Elsevier, Amsterdam, pp 265–443. doi: 10.1016/S0168-1273(84)07005-7 Google Scholar
  10. Caro PE, Sawyer JO, Evring L (1972) The infrared spectra of rare earth carbonates. Spectrochim Acta 8:1167–1173. doi: 10.1016/0584-8539(72)80088-6 Google Scholar
  11. Charles RG (1965) Rare-earth carbonates prepared by homogeneous precipitation. J Inorg Nucl Chem 27:1489–1493. doi: 10.1016/0022-1902(65)80008-2 CrossRefGoogle Scholar
  12. Christensen AN (1973) Hydrothermal preparation and magnetic properties of Dy2O2CO3, Ho2O2CO3, Er2O2CO3 and Yb2O2CO3. Acta Chem Scand 27:1835–1837. doi: 10.3891/acta.chem.scand.27-1835 CrossRefGoogle Scholar
  13. Coelho AA (2003) TOPAS: general profile and structure analysis software for powder diffraction dataGoogle Scholar
  14. Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6:3362–3378. doi: 10.1016/j.actbio.2010.02.017 CrossRefGoogle Scholar
  15. Di Tommaso D, de Leeuw NH (2010) Structure and dynamics of the hydrated magnesium ion and of the solvated magnesium carbonates: insights from first principles simulations. Phys Chem Chem Phys 12:894–901. doi: 10.1039/b915329b CrossRefGoogle Scholar
  16. Doert T, Rademacher O, Getzschmann J (1999) Crystal structure of dysprosium hydroxide carbonate DyOHCO3. Z Krist New Cryst St 214:11–12Google Scholar
  17. Eanes ED (2001) Amorphous calcium phosphate. Monogr Oral Sci 18:130–147. doi: 10.1159/000061652 CrossRefGoogle Scholar
  18. Farmer VC (1974) The Infrared Spectra of Minerals. Mineralogical Society of Great Britain & Ireland. Mineralogical Society Monograph 4Google Scholar
  19. Firsching FH, Mohammadzadei J (1986) Solubility products of the rare-earth carbonates. J Chem Eng Data 31:40–42. doi: 10.1021/je00043a013 CrossRefGoogle Scholar
  20. Galwey AK, Brown ME (1999) Decomposition of carbonates. Thermal decomposition of ionic solids. Elsevier B.V. Ed, In, pp 345–364Google Scholar
  21. Gasgnier M (1991) Rare-earth elements in permanent magnets and superconducting compounds and alloys (except new high Tc ceramics) as thin films, thin crystals and thinned bulk materials. J Mater Sci 26:1989–1999. doi: 10.1007/BF00549157 CrossRefGoogle Scholar
  22. Goodwin A, Michel FM, Phillips BL, Keen DA, Dove MT, Reeder RJ (2010) Nanoporous structure and medium-range order in synthetic amorphous calcium carbonate. Chem Mater 22:3197–3205. doi: 10.1021/cm100294d CrossRefGoogle Scholar
  23. Herdman GJ, Salmon PS (1991) Dynamics of water protons in concentrated Ga3+, Al3+, Fe3+ and Dy3+ aqueous solutions: a study using incoherent quasi-electric neutron scattering. J Am Chem Soc 113:2930–2939. doi: 10.1021/ja00008a022 CrossRefGoogle Scholar
  24. Huang CH (2010) Rare earth coordination chemistry: Fundamentals and applications. Jonh Willey & Sons, Singapore 2010CrossRefGoogle Scholar
  25. Huang SC, Naka K, Chujo Y (2007) A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s. Langmuir 23:12086–12095. doi: 10.1021/la701972n CrossRefGoogle Scholar
  26. Jones AP, Wall F (1996) Williams CT (1996) Rare earth minerals: chemistry, origin and ore deposits. Chapman & Hall, LondonGoogle Scholar
  27. Kanamori J (2006) Rare earth elements and magnetism in metallic systems. J Alloy Compd 408–412:2–8. doi: 10.1016/j.jallcom.2005.04.103 CrossRefGoogle Scholar
  28. Kutlu I, Meyer G (1999) Basische Carbonate des Dysprosiums: Dy2O2(CO3) und Dy(OH)(CO3). Z Anorg Allg Chem 625:402–406. doi: 10.1002/(SICI)1521-3749(199903)625:3<402:AID-ZAAC402>3.0.CO;2-S CrossRefGoogle Scholar
  29. Leskelä M, Niinistö L (1986) Inorganic complex compounds I. In: Gschneidner KA, Eyring L (eds) Handbook of the physics and chemistry of rare earths, vol 8. Elsevier, Amsterdam, pp 203–334Google Scholar
  30. McHenry ME, Laughlin DE (2000) Nano-scale materials development for future magnetic applications. Acta Mater 48:223–238. doi: 10.1016/S1359-6454(99)00296-7 CrossRefGoogle Scholar
  31. McHenry ME, Willard MA, Laughlin DE (1999) Amorphous and nanocrystalline materials for applications as soft magnets. Prog Mater Sci 44:291–433. doi: 10.1016/S0079-6425(99)00002-X CrossRefGoogle Scholar
  32. Meldrum FC, Cölfen H (2008) Controlling mineral morphologies and structures in biological and synthetic systems. Chem Rev 108:4332–4432. doi: 10.1021/cr8002856 CrossRefGoogle Scholar
  33. Meldrum FC, Sear RP (2008) Now you see them. Science 322:1802–1803. doi: 10.1126/science.1167221 CrossRefGoogle Scholar
  34. Michiba K, Tahara T, Nakai I, Miyawaki R, Matsubara S (2011) Crystal structure of hexagonal RE(CO3)OH. Z Kristallogr 226:518–530. doi: 10.1524/zkri.2011.1222 CrossRefGoogle Scholar
  35. Miyawaki R, Kuriyama J, Nakai I (1993) The redefinition of tengerite-(Y), Y2(CO3)3·2–3H2O, and its crystal structure. Am Mineral 78:425–432Google Scholar
  36. Miyawaki R, Matsubara S, Yokoyama K, Takeuchi K, Terada Y, Nakai I (2000) Kozoite-(Nd), Nd(CO3)(OH), a new mineral in an alkali olivine basalt from Hizen-cho, Saga Prefecture, Japan. Am Mineral 85:1076–1081Google Scholar
  37. Ogino T, Suzuki T, Sawada K (1987) The formation and transformation mechanism of calcium carbonate in water. Geochim Cosmochim Acta 51:2757–2767. doi: 10.1016/0016-7037(87)90155-4 CrossRefGoogle Scholar
  38. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982. doi: 10.1103/PhysRev.56.978 CrossRefGoogle Scholar
  39. Philippini V, Vercouter T, Chaussé A, Vitorge P (2008) Precipitation of ALn(CO3)2, xH2O and Dy2(CO3)3, xH2O compounds from aqueous solutions for A+ = Li+, Na+, K+, Cs+, NH4 + and Ln3+ = La3+, Nd3+, Eu3+, Dy3+. J Solid State Chem 181:2143–2154. doi: 10.1002/chin.200852018 CrossRefGoogle Scholar
  40. Politi Y, Batchelor DR, Zaslansky P, Chmelka BF, Weaver JC, Sagi I, Weiner S, Addadi L (2010) Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: a structure-function investigation. Chem Mat 22:161–166. doi: 10.1021/cm902674h CrossRefGoogle Scholar
  41. Radha AV, Forbes TZ, Killian CE, Gilbert PUPA, Navrotsky A (2010) Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. P Natl Acad Sci USA 107:16348–16443. doi: 10.1073/pnas.1009959107 CrossRefGoogle Scholar
  42. Refat MS (2004) A novel method for the synthesis of rare earth carbonates. Syn React Inorg Met 34:1605–1613. doi: 10.1081/SIM-200026601 CrossRefGoogle Scholar
  43. Rodriguez-Blanco JD, Shaw S, Benning LG (2008) How to make ‘stable’ ACC: protocol and preliminary structural characterization. Mineral Mag 72:283–286. doi: 10.1180/minmag.2008.072.1.283 CrossRefGoogle Scholar
  44. Rodriguez-Blanco JD, Shaw S, Benning LG (2009) The realtime kinetics and mechanisms of nucleation and growth of dolomite from solution. Geochim et Cosmochim Acta, 73, A1111. doi: 10.1016/j.gca.2009.05.014
  45. Rodriguez-Blanco JD, Bots P, Roncal-Herrero T, Shaw S, Benning LG (2011) The role of pH and Mg in the stability and crystallization of amorphous calcium carbonate. J Alloy Compd 536: S477–S479.
  46. Rodriguez-Blanco JD, Shaw S, Benning LG (2011b) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 3:265–271. doi: 10.1039/C0NR00589D CrossRefGoogle Scholar
  47. Roncal-Herrero T, Rodriguez-Blanco JD, Benning LG, Oelkers EH (2009) Precipitation of iron and aluminum phosphates directly from aqueous solution as a function of temperature from 50 to 200 °C. Cryst Growth Des 9:5197–5205. doi: 10.1021/cg900654m CrossRefGoogle Scholar
  48. Roncal-Herrero T, Rodriguez-Blanco JD, Oelkers EH, Benning LG (2011) The direct precipitation of rhabdophane (REEPO4·nH2O) nano-rods from acidic aqueous solutions at 5–100°C. J Nanopart Res 13:4049–4062. doi: 10.1007/s11051-011-0347-6 CrossRefGoogle Scholar
  49. Salavati-Niasari M, Javidi J, Davar F, Fazl AA (2010) Sonochemical synthesis of Dy2(CO3)3 nanoparticles and their conversion to Dy2O3 and Dy(OH)3: effects of synthesis parameters. J Alloy Compd 503:500–506. doi: 10.1016/j.jallcom.2010.05.041 CrossRefGoogle Scholar
  50. Sankaranarayanan VK, Gajbhiye NS (1989) Thermal decomposition of dysprosium iron citrate. Thermochim Acta 153:337–348. doi: 10.1016/0040-6031(89)85448-6 CrossRefGoogle Scholar
  51. Song L, Rongjun M (1996) Synthesis and structure of hydrated europium carbonate. J Cryst Growth 169:190–192. doi: 10.1016/0022-0248(96)00290-4 CrossRefGoogle Scholar
  52. Song L, Rongjun MA (2006) Synthesis of hydrated praseodymium, samarium, gadolinium and dysprosium carbonates. J Rare Earth 24:358–361CrossRefGoogle Scholar
  53. Sungur A, Kizilyalli M (1983) Synthesis and structure of Gd2(CO3)3· nH2O (n = 2,3). J Less Common Met 93:419–423. doi: 10.1016/0022-5088(83)90197-2 CrossRefGoogle Scholar
  54. Tahara T, Nakai I, Miyawaki R, Matsubara S (2007) Crystal chemistry of RE(CO3)OH. Z Krystallogr 222:326–334. doi: 10.1524/zkri.2007.222.7.326 CrossRefGoogle Scholar
  55. Tobler DJ, Benning LG (2011) The microbial diversity in Icelandic hot springs: temperature, salinity, pH and sinter growth rate effects. Extremophiles 15:473–485. doi: 10.1007/s00792-011-0378-z CrossRefGoogle Scholar
  56. Tobler DJ, Shaw S, Benning LG (2009) Quantification of initial steps of nucleation and growth of silica nanoparticles: an in situ SAXS and DLS study. Geochim Cosmochim Ac 73:5377–5393. doi: 10.1016/j.gca.2009.06.002 CrossRefGoogle Scholar
  57. Van Driessche AES, Benning LG, Rodriguez-Blanco JD, Ossorio M, Bots P, García-Ruiz JM (2012) The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336:69–72. doi: 10.1126/science.1215648 CrossRefGoogle Scholar
  58. Van Vleck JH (1952) The theory of electric and magnetic susceptibilities. Oxford University Press, LondonGoogle Scholar
  59. Xu AW, Fang YP, You LP, Liu HQ (2003) A simple method to synthesize Dy(OH)3 and Dy2O3 nanotubes. J Am Chem Soc 125:1494–1495. doi: 10.1021/ja029181q CrossRefGoogle Scholar
  60. Yan CH, Yan ZG, Du YP, Shen J, Zhang C, Feng W (2011) Controlled synthesis and properties of rare earth nanomaterials. In: Gschneidner KA, Bunzli JCG, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earths, vol 41. Elsevier, Amsterdam, pp 275–472CrossRefGoogle Scholar
  61. Yang KF, Fan HR, Santosh M, Hu FF, Wang KY (2011) Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, north China: constraints for the mechanism of super accumulation of rare earth elements. Ore Geol Rev 40:122–131. doi: 10.1016/j.oregeorev.2011.05.008 CrossRefGoogle Scholar
  62. Zhang J, Lim KY, Feng YP, Li Y (2007) Fe–Nd–B–based hard magnets from bulk amorphous precursor. Scripta Mater 56:943–946. doi: 10.1016/j.scriptamat.2007.02.016 CrossRefGoogle Scholar
  63. Zyman ZZ, Rokhmistrov DV, Glushko VI (2010) Structural and compositional features of amorphous calcium phosphate at the early stage of precipitation. J Mater Sci Mater Med 21:123–130. doi: 10.1007/s10856-009-3856-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Beatriz Vallina
    • 1
    • 2
  • Juan Diego Rodriguez-Blanco
    • 1
  • Andrew P. Brown
    • 3
  • Jesus A. Blanco
    • 2
  • Liane G. Benning
    • 1
    Email author
  1. 1.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  2. 2.Departamento de FísicaUniversidad de OviedoOviedoSpain
  3. 3.Institute for Materials Research, SPEME, Faculty of EngineeringUniversity of LeedsLS2 9JTUK

Personalised recommendations