Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

  • Wei-Ning Wang
  • Jagadish C. Tarafdar
  • Pratim BiswasEmail author
Research Paper


An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles (d p  < 100 nm) generated by the aerosol process could enter the leaf following the stomatal pathway, then pass through the stem, and reach the root of the watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.


Nanoparticle translocation Organic farming Nanotoxicity Stomatal pathway Particle size measurements 



This work was performed in part at the Nano Research Facility (NRF), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under Grant No. ECS-0335765.

Supplementary material

11051_2013_1417_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1237 kb)


  1. Abdulrahaman AA, Oyedotun RA, Oladele FA (2011) Diagnostic Significance of Leaf Epidermal Features in the Family Cucurbitaceae. Insight Bot 1(2):22–27CrossRefGoogle Scholar
  2. Bergin MH, Greenwald R, Xu J, Berta Y, Chameides WL (2001) Influence of aerosol dry deposition on photosynthetically active radiation available to plants: a case study in the Yangtze delta region of China. Geophys Res Lett 28(18):3605–3608CrossRefGoogle Scholar
  3. Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Gunther D, Limbach LK (2010) No evidence for cerium dioxide nanoparticle translocation in Maize plants. Environ Sci Technol 44(22):8718–8723CrossRefGoogle Scholar
  4. Biswas P, An WJ and Wang W-N (2012) Engineered nanoparticles and the environment: inadvertently and intentionally produced, 1st edn. In: Barnard S and Guo H (ed) Nature’s Nanostructures. Pan Stanford, Singapore, pp 443–476Google Scholar
  5. Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13(6):2443–2449CrossRefGoogle Scholar
  6. Choi K-S, Lee S-H and Choi H-S (2005) Liquid Composition for promoting plant growth, which includes nano-particle titanium Dioxide. US 20050079977 A1, 14 April 2005Google Scholar
  7. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170CrossRefGoogle Scholar
  8. Corradini E, de Moura MR, Mattoso LHC (2010) A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Expr Polym Lett 4(8):509–515CrossRefGoogle Scholar
  9. Corredor E, Testillano PS, Coronado MJ, Gonzalez-Melendi P, Fernandez-Pacheco R, Marquina C, Ibarra MR, de la Fuente J, Rubiales D, Perez-De-Luque A, Risueno MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identication. BMC Plant Biol 9:45CrossRefGoogle Scholar
  10. Da Silva LC, Oliva MA, Azevedo AA, De Araujo JM (2006) Responses of resting a plant species to pollution from an iron pelletization factory. Water Air Soil Poll 175(1–4):241–256CrossRefGoogle Scholar
  11. Du WC, Sun YY, Ji R, Zhu JG, Wu JC, Guo HY (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828CrossRefGoogle Scholar
  12. Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway. Physiol Plantarum 132(4):491–502CrossRefGoogle Scholar
  13. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plantarum 134(1):151–160CrossRefGoogle Scholar
  14. Eiden R, Burkhardt J, Burkhardt O (1994) Atmospheric Aerosol-particles and their role in the formation of dew on the surface of plant-leaves. J Aerosol Sci 25(2):367–376CrossRefGoogle Scholar
  15. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401CrossRefGoogle Scholar
  16. Gewin V (2006) Nanotech’s big issue. Nature 443(7108):137CrossRefGoogle Scholar
  17. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803CrossRefGoogle Scholar
  18. Gonzalez-Melendi P, Fernandez-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueno MC, Marquina C, Ibarra MR, Rubiales D, Perez-De-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195CrossRefGoogle Scholar
  19. Grantz DA, Garner JHB, Johnson DW (2003) Ecological effects of particulate matter. Environ Int 29(2–3):213–239CrossRefGoogle Scholar
  20. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138AGoogle Scholar
  21. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227CrossRefGoogle Scholar
  22. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851CrossRefGoogle Scholar
  23. Lin DH, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585CrossRefGoogle Scholar
  24. Liu QL, Chen B, Wang QL, Shi XL, Xiao ZY, Lin JX, Fang XH (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010CrossRefGoogle Scholar
  25. Luttge U, Higinbotham N (1979) Transport in Plants. Springer-Verlag, New YorkCrossRefGoogle Scholar
  26. Mashayek A, Ashgriz N (2011) Dynamics of liquid droplets. In: Ashgriz N (ed) Handbook of atomization and sprays—theory and applications. Springer, New YorkGoogle Scholar
  27. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444(7117):267–269CrossRefGoogle Scholar
  28. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517CrossRefGoogle Scholar
  29. Nadakavukaren M, McCracken D (1985) Botany: an introduction to plant biology. West, New YorkGoogle Scholar
  30. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163CrossRefGoogle Scholar
  31. Rai M, Yadav A, Gade A (2008) CRC 675—current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28(4):277–284CrossRefGoogle Scholar
  32. Rajesh R, Jaya L, Niranjan K, Vijay M, Sahebrao K (2009) Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr Nanosci 5(1):117–122CrossRefGoogle Scholar
  33. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic Aerosol.4. Particulate abrasion products from leaf surfaces of urban plants. Environ Sci Technol 27(13):2700–2711CrossRefGoogle Scholar
  34. Sahu M, Suttiponparnit K, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Characterization of doped TiO2 nanoparticle dispersions. Chem Eng Sci 66(15):3482–3490CrossRefGoogle Scholar
  35. Shimada M, Wang WN, Okuyama K, Myojo T, Oyabu T, Morimoto Y, Tanaka I, Endoh S, Uchida K, Ehara K, Sakurai H, Yamamoto K, Nakanishi J (2009) Development and evaluation of an aerosol generation and supplying system for inhalation experiments of manufactured nanoparticles. Environ Sci Technol 43(14):5529–5534CrossRefGoogle Scholar
  36. Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Bios 3(3):115–122Google Scholar
  37. Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32(5):726–728CrossRefGoogle Scholar
  38. Suttiponparnit K, Jiang JK, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:27Google Scholar
  39. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300CrossRefGoogle Scholar
  40. Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44(3):1036–1042CrossRefGoogle Scholar
  41. Wang WN, Widiyastuti W, Lenggoro IW, Kim TO, Okuyama K (2007a) Photoluminescence optimization of luminescent nanocomposites fabricated by spray pyrolysis of a colloid-solution precursor. J Electrochem Soc 154(4):J121–J128CrossRefGoogle Scholar
  42. Wang WN, Widiyastuti W, Ogi T, Lenggoro IW, Okuyama K (2007b) Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors. Chem Mater 19(7):1723–1730CrossRefGoogle Scholar
  43. Wang WN, Purwanto A, Lenggoro IW, Okuyama K, Chang H, Jang HD (2008) Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis. Ind Eng Chem Res 47(5):1650–1659CrossRefGoogle Scholar
  44. Wang SH, Kurepa J, Smalle JA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820CrossRefGoogle Scholar
  45. Willmer C and Fricker M (1996) Stomata. Chapman and Hall, LondonGoogle Scholar
  46. Zhang ZY, He X, Zhang HF, Ma YH, Zhang P, Ding YY, Zhao YL (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3(8):816–822CrossRefGoogle Scholar
  47. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monitor 10(6):713–717CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Wei-Ning Wang
    • 1
  • Jagadish C. Tarafdar
    • 2
  • Pratim Biswas
    • 1
    Email author
  1. 1.Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisUSA
  2. 2.Central Arid Zone Research InstituteJodhpurIndia

Personalised recommendations