Advertisement

Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites

  • Parveen Saini
  • Veena Choudhary
Research Paper

Abstract

Multiwall carbon nanotubes (MWCNTs)/polystyrene composites were fabricated by solution processing route using non-covalently functionalized (polyaniline coated) MWCNTs. These composites exhibit an extremely low percolation threshold (0.12 vol.% MWCNT) along with micro porosity and are found to have potential applications in the areas of electromagnetic interference (EMI) shielding and electrostatic dissipation (ESD) with an ESD time of 0.78 s and shielding effectiveness of −23.3 dB (>99 % attenuation). The EMI shielding was found to be dominated by absorption (−18.7 dB) with a nominal contribution from reflection (−4.6 dB) that can explained in terms of multiple internal reflection phenomenon driven by high conductivity and the porous structure.

Keywords

Polyaniline Conducting polymers Electrical conductivity Antistatic EMI shielding effectiveness Absorption loss and reflection loss 

Notes

Acknowledgments

We wish to thank Director NPL for his keen interest in work. We are also thankful to Mr. K.N. Sood for recording SEM images.

Supplementary material

11051_2012_1415_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1208 kb)

References

  1. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12:750–753CrossRefGoogle Scholar
  2. Baughman RH, Zakhidov AA, de Heer A (2002) Carbon nanotubes—the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  3. Blanchet GB, Fincher CR, Gao F (2003) Polyaniline nanotube composites: a high-resolution printable conductor. Appl Phys Lett 82:1290–1292CrossRefGoogle Scholar
  4. Che RC, Peng LM, Duan XF, Chen XF, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16:401–405CrossRefGoogle Scholar
  5. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRefGoogle Scholar
  6. Colaneri NF, Shacklette LW (1992) EMI shielding measurements of conductive polymer blends. IEEE Trans Instrum Meas 41:291–297CrossRefGoogle Scholar
  7. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials. Nanoscale Res Lett 6:137. doi: 10.1186/1556-276X-6-137 CrossRefGoogle Scholar
  8. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Angew Chem Int Ed 40:2591–2611CrossRefGoogle Scholar
  9. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  10. Joo J, Epstein AJ (1994) Electromagnetic radiation shielding by intrinsically conducting polymers. Appl Phys Lett 65:2278–2280CrossRefGoogle Scholar
  11. Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Pejaković DA, Yoo JW, Epstein AJ (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84:589–591CrossRefGoogle Scholar
  12. Li N, Huang Y, Du V, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6:1141–1145CrossRefGoogle Scholar
  13. Li Y, Chen C, Li J-T, Zhang S, Ni Y, Cai S, Huang J (2010) Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite. Nanoscale Res Lett 5:1170–1176CrossRefGoogle Scholar
  14. MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers. Angew Chem Int Ed 40:2581–2590CrossRefGoogle Scholar
  15. Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308CrossRefGoogle Scholar
  16. Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83:2928–2930CrossRefGoogle Scholar
  17. Saini P, Arora M (2012) In: Gomes AD (ed) New polymers for special applications. Intech., Croatia. doi: 10.5772/48779. http://www.intechopen.com/download/pdf/38964
  18. Saini P, Jalan R, Dhawan SK (2008) Synthesis and characterization of processable polyaniline doped with novel dopant NaSIPA. J Appl Polym Sci 108:1437–1446CrossRefGoogle Scholar
  19. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline/MWCNT composites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926CrossRefGoogle Scholar
  20. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2011) Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth Met 161:1522–1526CrossRefGoogle Scholar
  21. Saini P, Choudhary V, Dhawan SK (2012a) Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization. Polym Adv Technol 23:343–349CrossRefGoogle Scholar
  22. Saini P, Choudhary V, Vijayan N, Kotnala RK (2012b) improved electromagnetic interference shielding response of poly (aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J Phys Chem C 116:13403–13412CrossRefGoogle Scholar
  23. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899CrossRefGoogle Scholar
  24. Sangermano M, Pegel S, Pötschke P, Voit B (2008) Antistatic epoxy coatings with carbon nanotubes obtained by cationic photopolymerization. Macromol Rapid Commun 29:396–400CrossRefGoogle Scholar
  25. Schulz RB, Plantz VC, Brush DR (1988) Shielding theory and practice. IEEE Trans 30:187–201Google Scholar
  26. Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers. Angew Chem Int Ed 40:2574–2580CrossRefGoogle Scholar
  27. Singh BP, Prabha, Saini P, Gupta T, Garg P, Kumar G, Pandey I, Pandey S, Seth RK, Dhawan SK, Mathur RB (2011) Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation. J Nanopart Res 13:7065–7074CrossRefGoogle Scholar
  28. Stafstrom S, Bredas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG (1987) Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys Rev Lett 59:1464–1467CrossRefGoogle Scholar
  29. Ting TH, Jau YN, Yu RP (2012) Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents. Appl Surf Sci 258:3184–3190CrossRefGoogle Scholar
  30. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube—polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5:2131–2134CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Polymeric & Soft Materials SectionCSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Centre for Polymer Science & EngineeringIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations