Synthesis and functionalization of biocompatible Tb:CePO4 nanophosphors with spindle-like shape

  • Sonia Rodriguez-Liviano
  • Francisco J. Aparicio
  • Ana I. Becerro
  • Jorge García-Sevillano
  • Eugenio Cantelar
  • Sara Rivera
  • Yulán Hernández
  • Jesus M. de la Fuente
  • Manuel Ocaña
Research Paper

Abstract

Monoclinic Tb:CePO4 nanophosphors with a spindle-like morphology and tailored size (in the nanometer and micrometer range) have been prepared through a very simple procedure, which consists of aging, at low temperature (120 °C), ethylene glycol solutions containing only cerium and terbium acetylacetonates and phosphoric acid, not requiring the addition of surfactants or capping agents. The influence of the heating mode (conventional convection oven or microwave oven) and the Tb doping level on the luminescent, structural and morphological features of the precipitated nanoparticles have also been analyzed. This study showed that microwave-assisted heating resulted in an important beneficial effect on the luminescent properties of these nanophosphors. Finally, a procedure for the functionalization of the Tb:CePO4 nanoparticles with aspartic-dextran is also reported. The functionalized nanospindles presented negligible toxicity for Verocells, which along with theirs excellent luminescent properties, make them suitable for biomedical applications.

Keywords

Nanoparticles Cerium phosphate Terbium Luminescence Functionalization Aspartic-dextran 

Supplementary material

11051_2012_1402_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1,148 kb)

References

  1. Bao J, Yu R, Zhang J, Wang D, Deng J, Chen J, Xing X (2010) Oxalate-induced hydrothermal synthesis of CePO4:Tb nanowires with enhanced photoluminescence. Scripta Mater 62:133–136CrossRefGoogle Scholar
  2. Blasse G, Brill A (1967) Investigation of some Ce3+ activated phosphors. J Chem Phys 47:1920–1926CrossRefGoogle Scholar
  3. Bu W, Hua Z, Chen H, Shi J (2005) Epitaxial synthesis of uniform cerium phosphate one-dimensional nanocable heterostructures with improved luminescence. J Phys Chem B 109:14461–14464CrossRefGoogle Scholar
  4. Buchold BHM, Feldman C (2008) Microemulsion approach to non-agglomerated and crystalline nanomaterials. Adv Funct Mater 18:1002–1011CrossRefGoogle Scholar
  5. Chatterjee DK, Gnanasammandhan MK, Zhang Y (2010) Upconverting fluorescent nanoparticles for biomedical applications. Small 6:2781–2795CrossRefGoogle Scholar
  6. Chen G, Sun S, Zhao W, Xu S, You T (2008) Template synthesis and luminescence properties of CePO4:Tb nanotubes. J Phys Chem C 112:20217–20221CrossRefGoogle Scholar
  7. Chen Y, Chen H, Zhang S, Chen F, Zhang L, Zhang J, Zhu M, Wu H, Guo L, Feng J, Shi J (2011) Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Adv Funct Mater 21:270–278CrossRefGoogle Scholar
  8. Di W, Wang X, Ren X (2010a) Nanocrystalline CePO4:Tb as a novel oxygen sensing material on the basis of its redox responsive reversible luminescence. Nanotechnology 21:075709CrossRefGoogle Scholar
  9. Di W, Shirahata N, Zheng A, Sakka Y (2010b) Fluorescent sensing of colloidal CePO4:Tb nanorods for rapid, ultrasensitive and selective detection of vitamin C. Nanotechnology 21:365501CrossRefGoogle Scholar
  10. Feldmann C (2003) Polyol-mediated synthesis of nanoscale functional materials. Adv Funct Mater 13:101–107CrossRefGoogle Scholar
  11. Fuentes M, Mateo C, García L, Tercero JC, Guisán JM, Fernández-Lafuente R (2004) Directed covalent immobilization of aminated DNA probes on aminated plates. Biomacromolecules 5:883–888CrossRefGoogle Scholar
  12. Gamarnik MY (1992) Size changes of lattice-parameters in small particles of hexagonal crystals. Phys Stat Sol 170:27–37CrossRefGoogle Scholar
  13. Guan M, Sun J, Han M, Xu Z, Tao F, Yin G, Wei X, Zhu J, Jiang X (2007) Synthesis and luminescence of CePO4 and CePO4:Tb hollow and core-shell microspheres composed of single-crystal nanorods. Nanotechnology 18:415602CrossRefGoogle Scholar
  14. Huang XL, Teng X, Chen D, Tang FQ (2010) Biomaterials 31:438–448CrossRefGoogle Scholar
  15. Imteyaz Ahmad MD, Bhattacharya SS (2009) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Appl Phys Lett 95:191906CrossRefGoogle Scholar
  16. Inokuti M, Hirayama F (1965) Size effect on the lattice parameters of nanocrystalline anatase. J Chem Phys 43:1978–1989CrossRefGoogle Scholar
  17. Komban R, Beckmann R, Rode S, Ichilmann S, Kühnle Beginn W, Haase M (2011) Surface modification of luminescent lanthanide phosphate nanorods with cationic “Quat-primer” polymers. Langmuir 27:10174–10183CrossRefGoogle Scholar
  18. Lemine OM, Sajieddine M, Bououdina M, Msalam R, Mufti S, Alyamani A (2010) Rietveld analysis and Mossbauer spectroscopy studies of nanocrystalline hematite alpha-Fe2O3. J Alloys Comp 502:279–282CrossRefGoogle Scholar
  19. Lewis DA, Summers JD, Ward TC, McGrath JEJ (1992) Accelerated imidization reactions using microwave-radiation. J Polym Sci 30A:1647–1653Google Scholar
  20. Li H, Zhu G, Ren H, Li Y, Hewitt IJ, Qiu S (2008) The synthesis of multiwalled rare-earth phosphate nanomaterials using organophosphates with upconversion properties. Eur J Inorg Chem:2033–2037Google Scholar
  21. Li Y, Sun Z, Lun M, Zhang X, Yao M, Joly AG, Liu Z, Chen W (2010) Synthesis and luminescence of CePO4:Tb/LaPO4 core/sheath nanowires. Nanotechnology 21:125604CrossRefGoogle Scholar
  22. Luwang MN, Ningthoujam RS, Srivastava SK, Vatsa RK (2010) Effects of Ce3+ codoping and annealing on phase transformation and luminescence of Eu3+-doped YPO4 nanorods: D2O solvent effect. J Am Chem Soc 132:2759–2768CrossRefGoogle Scholar
  23. Ma L, Che WX, Zheng YF, Xu ZD (2008) Hydrothermal growth and morphology evolution of CePO4 aggregates by a complexing method. Mater Res Bull 43:2840–2849CrossRefGoogle Scholar
  24. Matijević E (1993) Preparation and properties of uniform size colloids. Chem Mater 5:412–426CrossRefGoogle Scholar
  25. Mosmann TJ (1993) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assay. J Immunol Methods 95:55–63Google Scholar
  26. Mullica DF, Milligan WO, Grossie DA, Beall GW, Boatner LA (1984) Ninefold coordination in LaPO4-pentagonal interpenetrating tetrahedral polyhedron. Inorg Chim Acta 95:231–236Google Scholar
  27. Nakamoto K (1986) Infrared and Raman Spectra of inorganic and coordination compounds. Wiley, New YorkGoogle Scholar
  28. Ni YX, Hughes JM, Mariano AN (1995) Crystal-chemistry of the monazite and xenotime structures. Am Miner 80:21–26Google Scholar
  29. Nuñez NO, Ocaña M (2007) An ionic liquid based synthesis method for uniform luminescent lanthanide fluoride nanoparticles. Nanotechnology 18:455606CrossRefGoogle Scholar
  30. Nyutu EK, Chen CH, Dutta PK, Suib SL (2008) Effect of microwave frequency on hydrothermal synthesis of nanocrystalline tetragonal barium titanate. J Phys Chem C 112:9659–9667CrossRefGoogle Scholar
  31. Pankratov V, Popov AI, Chernov SA, Zharkouskaya A, Feldmann C (2010) Mechanism for energy transfer processes between Ce3+ and Tb3+ in LaPO4:Ce, Tb nanocrystals by time-resolved luminescence spectroscopy. Phys Status Solidi B 247:2252–2257CrossRefGoogle Scholar
  32. Perez-Omil JA (1994) Interpretación sistemática de imágenes de microscopía electrónica de alta resolución de materiales policristalinos. Estudio de catalizadores metálicos soportados. Dissertation, University of CádizGoogle Scholar
  33. Petricek V, Dusek M, Palatinus L (2006) Institute of Physics, Academy of Sciences of the Czech Republic, Praha. http://www-xray.fzu.cz/jana/jana.html
  34. Poul L, Ammar S, Jouini N, Fievet F (2003) Synthesis of inorganic compounds (metal, oxide and hydroxide) in polyol medium: a versatile route related to the sol-gel process. J Sol-Gel Sci Technol 26:261–265CrossRefGoogle Scholar
  35. Riwotzki K, Meyssamy H, Kornowski A, Haase M (2000) Liquid-phase synthesis of doped nanoparticles: colloids of luminescing LaPO4:Eu and CePO4:Tb particles with a narrow particle size distribution. J Phys Chem B 104:2824–2828CrossRefGoogle Scholar
  36. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767Google Scholar
  37. Wagner D, Riggs WH, Davis LE, Moulder JF, Muilinberg GE (1973) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, MinnesotaGoogle Scholar
  38. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  39. Yu C, Yu M, Li C, Liu X, Yang J, Yang P, Lin J (2009) Facile sonochemical synthesis and photoluminescent properties of lanthanide orthophosphate nanoparticles. J Solid State Chem 182:339–347CrossRefGoogle Scholar
  40. Zhang F, Wong SS (2010) Ambient large-scale template-mediated synthesis of high-aspect ratio single-crystalline, chemically doped rare-earth phosphate nanowires for bioimaging. ACS Nano 4:99–112CrossRefGoogle Scholar
  41. Zhang F, Chan SW, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP (2002) Cerium oxide nanoparticles: size-selective formation and structure analysis. Appl Phys Lett 80:127–129Google Scholar
  42. Zhang YW, Yang ZG, You LP, Si R, Yan CH (2003) General synthesis and characterization of monocrystalline lanthanide orthophosphate nanowires. Eur J Inorg Chem:4099–4104Google Scholar
  43. Zhang C, Chen J, Zhu X, Zhou Y, Li D (2009) Synthesis of tributylphosphate capped luminescent rare earth phosphate nanocrystals in an ionic liquid microemulsion. Chem Mater 21:3570–3575CrossRefGoogle Scholar
  44. Zhu X, Zhang Q, Li Y, Wang H (2010) Facile crystallization control of LaF3/LaPO4:Ce, Tb nanocrystals in a microfluidic reactor using microwave irradiation. J Mater Chem 20:1766–1771CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sonia Rodriguez-Liviano
    • 1
  • Francisco J. Aparicio
    • 1
  • Ana I. Becerro
    • 1
  • Jorge García-Sevillano
    • 3
  • Eugenio Cantelar
    • 3
  • Sara Rivera
    • 2
  • Yulán Hernández
    • 2
  • Jesus M. de la Fuente
    • 2
  • Manuel Ocaña
    • 1
  1. 1.Instituto de Ciencia de Materiales de Sevilla (CSIC-US)SevillaSpain
  2. 2.Instituto de Nanociencia de AragonUniversidad de ZaragozaZaragozaSpain
  3. 3.Dpto. Física de MaterialesC-04. Universidad Autónoma de MadridMadridSpain

Personalised recommendations