Effect of carrier gas composition on transferred arc metal nanoparticle synthesis

  • Matthias Stein
  • Dennis Kiesler
  • Frank Einar Kruis
Research Paper


Metal nanoparticles are used in a great number of applications; an effective and economical production scaling-up is hence desirable. A simple and cost-effective transferred arc process is developed, which produces pure metal (Zn, Cu, and Ag) nanoparticles with high production rates, while allowing fast optimization based on energy efficiency. Different carrier gas compositions, as well as the electrode arrangements and the power input are investigated to improve the production and its efficiency and to understand the arc production behavior. The production rates are determined by a novel process monitoring method, which combines an online microbalance method with a scanning mobility particle sizer for fast production rate and size distribution measurement. Particle characterization is performed via scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction measurements. It is found that the carrier gas composition has the largest impact on the particle production rate and can increase it with orders of magnitude. This appears to be not only a result of the increased heat flux and melt temperature but also of the formation of tiny nitrogen (hydrogen) bubbles in the molten feedstock, which impacts feedstock evaporation significantly in bi-atomic gases. A production rate of sub 200 nm particles from 20 up to 2,500 mg/h has been realized for the different metals. In this production range, specific power consumptions as low as 0.08 kWh/g have been reached.


Metal nanoparticles Transferred arc Online characterization Energy efficiency 



The research leading to these results has received funding from the European Union’s Seventh Framework Program under grant agreement No. 280765 (BUONAPART-E).


  1. Boules MI, Jurewicz J, Guo J (2011) Induction plasma synthesis of nanopowders. US patent No. 8013269 B2Google Scholar
  2. Brenner JR, Harkness JBL, Knickelbein MB, Krumdick GK, Marshall CL (1997) Microwave plasma synthesis of carbon-supported ultrafine metal particles. Nanostruct Mater 8:1–7CrossRefGoogle Scholar
  3. Celik C, Addona T, Boulos MI, Chen G, Davis HJ (2002) Method and transferred arc plasma system for production of fine and ultrafine powders. United States Patent No. 6379419 B1Google Scholar
  4. Chen J, Lu G, Zhu L, Flagan RC (2006) A simple and versatile mini-arc plasma source for nanocrystal synthesis. J Nanopart Res 9:203–212CrossRefGoogle Scholar
  5. Cole JJ, Lin EC, Barry CR, Jacobs H (2009) Continuous nanoparticle generation and assembly by atmospheric pressure arc discharge. Appl Phys Lett 95:113101CrossRefGoogle Scholar
  6. Dixkens J, Fissan H (1999) Development of an electrostatic precipitator for off-line particle analysis. Aerosol Sci Technol 30:438–453CrossRefGoogle Scholar
  7. Etemadi K, Pfender E (1985) Impact of anode evaporation on the anode region of a high-intensity argon arc. Plasma Chem Plasma Process 5(2):175–182Google Scholar
  8. Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37:86–108CrossRefGoogle Scholar
  9. Fauchais P, Vardelle A (1997) Thermal plasmas. IEEE Trans Plasma Sci 25(6):1258–1280CrossRefGoogle Scholar
  10. Feldheim DL, Foss CA (2001) Metal nanoparticles: synthesis, characterization, and applications. Decker, New York CityGoogle Scholar
  11. Förster H, Wolfrum C, Peukert W (2012) Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. J Nanopart Res 14(7):1–16CrossRefGoogle Scholar
  12. Fukumasa O, Fujiwara T (2003) Rapid synthesis of ferrite particles from powder mixtures using thermal plasma processing. Thin Solid Films 435:33–38CrossRefGoogle Scholar
  13. Furkawa S, Amakawa T, Adachi K (2002) Effects of copper vapor on heat transfer from atmospheric nitrogen plasma to a molten metal anode. Plasma Chem Plasma Process 22(1):85–104CrossRefGoogle Scholar
  14. Griem HR (1964) Plasma spectroscopy. McGraw-Hill, New YorkGoogle Scholar
  15. Haidar J (2009) Synthesis of Al nanopowders in an anodic plasma. Chem Plasma Process 29:307–319CrossRefGoogle Scholar
  16. Heberlein J (2002) New approaches in thermal plasma technology. Pure Appl Chem 74(3):327–335CrossRefGoogle Scholar
  17. Heberlein J, Postel O, Girshick S, McMurry P, Gerberich W, Iordanoglou D, Di Fonzo F, Neumann D, Gidwani A, Fan M, Tymiak N (2001) Thermal plasma deposition of nanophase hard coatings. Surf Coat Technol 142–144:265–271CrossRefGoogle Scholar
  18. Honig RE, Kramer DA (1969) Vapor pressure data for the solid and liquid elements. RCA Rev 30:285–305Google Scholar
  19. Kobayashi N, Kawakami Y, Kamada K, Li JG, Ye R, Watanabe T, Ishigaki T (2007) Spherical submicron-size copper powders coagulated from a vapor phase in RF induction thermal plasma. Thin Solid Films 516:4402–4406CrossRefGoogle Scholar
  20. Kortshagen U (2009) Nonthermal plasma synthesis of semiconductor nanocrystals. J Phys D Appl Phys 42(11):113001CrossRefGoogle Scholar
  21. Lee JG, Li P, Choi CJ, Dong XL (2010) Synthesis of Mn–Al alloy nanoparticles by plasma arc discharges. Thin Solid Films 519:81–85CrossRefGoogle Scholar
  22. Li X, Chen D, Li R, Wu Y, Niu C (2008) Electrode evaporation effects on air arc behavior. Plasma Sci Technol 10(3):323–327CrossRefGoogle Scholar
  23. Lim JW, Kim MS, Munirathnam NR, Le MT, Uschikoshi M, Mimura K, Isshiki M, Kwon HC, Choi GS (2008) Effect of Ar/Ar-H2 plasma arc melting on Cu purification. Mater Trans 49(8):1826–1829CrossRefGoogle Scholar
  24. Lutterotti L (2010) Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nuclear Instrum Meth B 268:334–340CrossRefGoogle Scholar
  25. Mack E, Osterhof GG, Kraner HM (1923) Vapor pressure of copper oxide and of copper. J Am Chem Soc 45(3):617–623CrossRefGoogle Scholar
  26. Mahoney W, Andres RP (1995) Aerosol synthesis of nanoscale clusters using atmospheric arc evaporation. Mater Sci Eng A204:160–164Google Scholar
  27. Mahoney W, Kempe MD, Andres RP (1996) Aerosol synthesis of metal and metal oxide nitride and carbide nanoparticles using an arc evaporation source. Mat Res Soc Symp Proc 400:65–70CrossRefGoogle Scholar
  28. Mariotti D, Sankaran RM (2010) Microplasmas for nanomaterials synthesis. J Phys D Appl Phys 43(32):323001CrossRefGoogle Scholar
  29. Munz RJ, Addona T, da Cruz AC (1999) Application of transferred arcs to the production of nanoparticles. Pure Appl Chem 71(10):1889–1897CrossRefGoogle Scholar
  30. Murphy AB (2010) The effect of metal vapour in arc welding. J Phys D Appl Phys 43:434001CrossRefGoogle Scholar
  31. Murphy AB, Tanaka M, Tashiro S, Sato T, Lowke JJ (2009) A computational investigation of the effectiveness of different shielding gas mixtures for arc welding. J Phys D Appl Phys 42:115205CrossRefGoogle Scholar
  32. Pfender E (1999) Thermal plasma technology: where do we stand and where are we going? Plasma Chem Plasma Process 19(1):1–31CrossRefGoogle Scholar
  33. Ramirez-Argaez MA, Gonzalez-Rivera C, Trapaga G (2009) Mathematical modeling of high intensity electric arcs burning in different atmospheres. ISIJ Int 49(6):796–803CrossRefGoogle Scholar
  34. Roth C, Ferron GA, Karg E, Lentner B, Schumann G, Takenaka S, Heyder J (2004) Generation of ultrafine particles by spark discharging. Aerosol Sci Technol 38:228–235CrossRefGoogle Scholar
  35. Schütze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26(6):1685–1694CrossRefGoogle Scholar
  36. Seo JH, Hong BG (2012) Thermal plasma synthesis of nano-sized powders. Nuclear Eng Technol 44(1):9–20CrossRefGoogle Scholar
  37. Shin MG, Park WD (2010) Synthesis of copper nanopowders by transferred arc and non-transferred arc plasma systems. J Optoelectron Adv Mater 12(3):528–534Google Scholar
  38. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmitt-Ott A (2009) Generation of nanoparticles by spark discharge. J Nanopart Res 11(2):315–332CrossRefGoogle Scholar
  39. Tanaka K, Ishizaki K, Yumoto S, Egashira T (1987) Production of ultra-fine silicon powder by the arc plasma method. J Mater Sci 22:2192–2198CrossRefGoogle Scholar
  40. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectochim Acta B 61:2–30CrossRefGoogle Scholar
  41. Uda M, Ohno S, Hoshi T (1983) Process for production fine metal particles. United States Patent No. 4376740Google Scholar
  42. Vollath D (2008) Plasma synthesis of nanopowders. J Nanopart Res 10:39–57CrossRefGoogle Scholar
  43. Weber AP, Seipenbusch M, Kasper G (2001) Application of aerosol techniques to study the catalytic formation of methane on gasborne nickel particles. J Phys Chem A 105:8958–8963CrossRefGoogle Scholar
  44. Wei Z, Xia T, Ma J, Dai J, Feng W, Wang Q, Yan P (2006) Growth mechanism of Cu nanopowders prepared by anodic arc plasma. Trans Nonferr Met Soc China 16:168–172CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Matthias Stein
    • 1
  • Dennis Kiesler
    • 1
  • Frank Einar Kruis
    • 1
  1. 1.Institute for Nanostructures and Technology (NST) and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenDuisburgGermany

Personalised recommendations