Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process

  • I. S. Lyubutin
  • S. S. Starchikov
  • Chun-Rong Lin
  • Shin-Zong Lu
  • Muhammad Omar Shaikh
  • K. O. Funtov
  • T. V. Dmitrieva
  • S. G. Ovchinnikov
  • I. S. Edelman
  • R. Ivantsov
Research Paper


Iron sulfide nanoparticles Fe3S4 with the spinel-type crystal structure were synthesized by the polyol mediated process. The particle size depends on preparation conditions and varies from 9 to 20 nm. Mössbauer data have revealed that the dominating fraction of iron ions in the 9-nm sample is in the high-spin ferric state. This implies an occurrence of the cation vacancies in nonstoichiometric greigite. The stoichiometric phase of greigite Fe3S4 dominates in the 18-nm-size nanoparticles. Magnetic measurements have shown a ferrimagnetic behavior of all samples at temperatures between 78 and 300 K. The estimated value of magnetic moment of the stoichiometric greigite nanoparticles is about 3.5 μB per Fe3S4 unit. The Mössbauer spectra indicate a superparamagnetic behavior of small particles, and some fraction of superparamagnetic phase is observed in all samples synthesized which may be caused by the particle size distribution. The blocking temperatures of T B ≈ 230 and 250 K are estimated for the 9 and 14 nm particles, respectively. The Mössbauer parameters indicate a great degree of covalency in the Fe–S bonds and support the fast electron Fe3+ ⇆ Fe2+ exchange in the B-sites of greigite. An absence of the Verwey transition at temperatures between 90 and 295 K is established supporting a semimetal type of conductivity. The temperature and magnetic field dependences of the magnetic circular dichroism (MCD) of optical spectra were measured in Fe3S4 for the first time. The spectra differ substantially from that of the isostructural oxide Fe3O4. It is supposed that the MCD spectra of greigite nanoparticles result from the collective electron excitations in a wide band with superimposed peaks of the dd transitions in Fe ions.


Iron sulfides Fe3S4 Magnetic and electronic properties Mössbauer spectroscopy Magnetic circular dichroism 



This work is supported by Russian Foundation for Basic Research (grant no. 11-02-92001) and the Russian Academy of Sciences under the Program “Nanotechnology and Nanomaterials” (grant no. 24-3.1). We also thank the National Science Council of Taiwan (NSC100-2923-M-218-001-MY3) for financial support.


  1. Babinszki E, Márton E, Márton P, Ferenc Kiss L (2007) Widespread occurrence of greigite in the sediments of Lake Pannon: implications for environment and magnetostratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 252:626–636CrossRefGoogle Scholar
  2. Beinert H, Holm RH, Münck E (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659CrossRefGoogle Scholar
  3. Benning LG, Wilkin RT, Barnes HL (2000) Reaction pathways in the Fe–S system below 100°C. Chem Geol 167:25–51CrossRefGoogle Scholar
  4. Brack M (1993) The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev Mod Phys 65:677–732CrossRefGoogle Scholar
  5. Chang L, Roberts AP, Tang Y, Rainford BD, Muxworthy AR, Chen Q (2008) Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). J Geophys Res 113:B06104CrossRefGoogle Scholar
  6. Chang L, Rainford BD, Stewart JR, Ritter C, Roberts AP, Tang Y, Chen Q (2009) Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction. J Geophys Res 114:B07101CrossRefGoogle Scholar
  7. Chang YS, Savitha S, Sadhasivam S, Hsu CK, Lin FH (2010) Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia. J Colloid Interface Sci 363(1):314–319CrossRefGoogle Scholar
  8. Chung A, Deen J, Lee JS, Meyyappan M (2010) Nanoscale memory devices. Nanotechnology 21. Article Number: 412001Google Scholar
  9. Coey JMD, Spender MR, Morrish AH (1970) The magnetic structure of the spinel Fe3S4. Solid State Commun 8:1605–1608CrossRefGoogle Scholar
  10. De Heer WA (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65:611–676CrossRefGoogle Scholar
  11. Dekkers MJ, Passier HF, Schoonen MAA (2000) Magnetic properties of hydrothermally synthesized greigite (Fe3S4) II. High- and low-temperature characteristics. Geophys J Int 141:809–819CrossRefGoogle Scholar
  12. Devey AJ, Grau-Crespo R, de Leeuw NH (2009) Electronic and magnetic structure of Fe3S4: GGA+U investigation. Phys Rev B 79:195126CrossRefGoogle Scholar
  13. Fleet ME (1981) The structure of magnetite. Acta Crystallogr Sect B Struct Sci 37:917–920CrossRefGoogle Scholar
  14. Fontijn WFJ, Van der Zaag PJ, Delivers MAC, Brabers VAM, Metselaar R (1997) Optical and magneto-optical polar Kerr spectra of Fe3O4 and Mg2+- or Al3+-substituted Fe3O4. Phys Rev B 56:5432CrossRefGoogle Scholar
  15. Gehring GA, Alshammari MS, Score DS, Neal JR, Mokhtari A, Fox AM (2012) Magneto-optic studies of magnetic oxides. J Magn Magn Mater 324:3422–3426CrossRefGoogle Scholar
  16. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29CrossRefGoogle Scholar
  17. Gubin SP, Koksharov YuA, Khomutov GB, Yurkov GYu (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–520CrossRefGoogle Scholar
  18. Hobbs D, Hafner J (1999) Magnetism and magneto-structural effects in transition-metal sulphides. J Phys: Condens Matter 11:8197–8222CrossRefGoogle Scholar
  19. Hoffmann V, Stanjek H, Murad E (1993) Mineralogical, magnetic and Mössbauer data of symthite (Fe9S11). Stud Geophys Geod 37:366–381CrossRefGoogle Scholar
  20. Hunger S, Benning L (2007) Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem Trans 8:1–20CrossRefGoogle Scholar
  21. Jasperson SN, Schnatterly SE (1969) An improved method for high reflectivity ellipsometry based on a new polarization modulation technique. Rev Sci Instrum 40:761–767CrossRefGoogle Scholar
  22. Jiang W-T, Horng C-S, Roberts AP, Peacor DR (2001) Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth Planet Sci Lett 193:1–12CrossRefGoogle Scholar
  23. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin, p 23Google Scholar
  24. Kumar P (2010) Magnetic behavior of surface nanostructured 50-nm nickel thin films. Nanoscale Res Lett 5:1596–1602CrossRefGoogle Scholar
  25. Kumar P, Krishna MG, Bhattacharya AK (2009) Effect of microstructural evolution on magnetic properties of Ni thin films. Bull Mater Sci 32:263–270CrossRefGoogle Scholar
  26. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113CrossRefGoogle Scholar
  27. Lotgering FK (1964) Ferromagnetic interactions in ferromagnetic sulphides, selenides and tellurides with spinel structure. In: Proceedings of international conference on magnetism, Nottingham, p 533Google Scholar
  28. Lyubutin IS, Lin CR, Korzhetskiy YV, Dmitrieva TV, Chiang RK (2009) Mössbauer spectroscopy and magnetic properties of hematite/magnetite nanocomposites. J Appl Phys 106:034311CrossRefGoogle Scholar
  29. Maher BA, Thompson R (eds) (1999) Quaternary climates, environments and magnetism. Cambridge University Press, CambridgeGoogle Scholar
  30. Makarov EF, Marfunin AS, Mkrtchyan AR, Nadzharyan GN, Povitskii VA, Stukan RA (1969) Mössbauer spectroscopic study of magnetic properties of Fe3S4. Sov Phys Solid State 11:391–392Google Scholar
  31. Menyah A, O’Reilly W (1991) The magnetization process in monoclinic pyrrhotite (Fe7S8) particles containing few domains. Geophys J Int 104:387–399CrossRefGoogle Scholar
  32. Morice JA, Rees LVC, Rickard DT (1969) Mössbauer studies of iron sulphides. J Inorg Nucl Chem 31:3797–3802CrossRefGoogle Scholar
  33. Piekarz P, Parlinski K, Oles AM (2007) Order parameters in the Verwey phase transition. J Phys Conf Ser (JPCS) 92:012164CrossRefGoogle Scholar
  34. Posfai M, Buseck PR, Bazylinski DA, Frankel RB (1998) Iron sulfides from magnetotactic bacteria: structure, composition, and phase transitions. Am Miner 83:1469–1481Google Scholar
  35. Roberts AP, Weaver R (2005) Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth Planet Sci Lett 231:263–277CrossRefGoogle Scholar
  36. Roberts AP, Reynolds RL, Verosub KL, Adam DP (1996) Environmental magnetic implications of greigite (Fe3S4) formation in a 3 m.y. lake sediment record from Butte Valley, northern California. Geophys Res Lett 23:2859–2862CrossRefGoogle Scholar
  37. Roberts AP, Chang L, Rowan CJ, Horng C-S, Florindo F (2011) Magnetic properties of sedimentary greigite (Fe3S4): an update. Rev Geophys 49:1–46. doi: 10.1029/2010RG000336 (RG1002)CrossRefGoogle Scholar
  38. Rowan CJ, Roberts AP (2006) Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet Sci Lett 241:119–137CrossRefGoogle Scholar
  39. Skinner BJ, Erd RC, Grimaldi FS (1964) Greigite, the thio-spinel of iron; a new mineral. Am Miner 49:543–555Google Scholar
  40. Snowball I, Thompson R (1988) The occurrence of greigite in the sediments of Loch Lomond. J Quat Sci 3:121–125CrossRefGoogle Scholar
  41. Snowball I, Thompson R (1990) A stable chemical remanence in Holocene sediments. J Geophys Res 95:4471–4479CrossRefGoogle Scholar
  42. Spender MR, Coey JMD, Morrish AH (1972) The magnetic properties and Mossbauer spectra of synthetic samples of Fe3S4. Can J Phys 50:2313–2326CrossRefGoogle Scholar
  43. Stanjek H, Murad E (1994) Comparison of pedogenic and sedimentary greigite by X-ray diffraction and Mössbauer spectroscopy. Clays Clay Miner 42:451–454CrossRefGoogle Scholar
  44. Surerus KK, Kennedy MC, Beinert H, Münck E (1989) Mössbauer study of the inactive Fe3S4 and Fe3Se4 and the active Fe4Se4 forms of beef heart aconitase. Proc Natl Acad Sci 86(24):9846–9850CrossRefGoogle Scholar
  45. Uda M (1965) On the synthesis of greigite. Am Miner 50:1487–1489Google Scholar
  46. Vasilenko IV, Cador L, Quahab L, Pavlischuk VV (2010) Effect of production conditions on the size and magnetic characteristics of iron sulphide Fe3S nanoparticles. Theoret Exp Chem 46:322CrossRefGoogle Scholar
  47. Vasiliev I, Dekkers MJ, Krijgsman W, Franke C, Langereis CG, Mullender TAT (2007) Early diagenetic greigite as a recorder of the palaeomagnetic signal in Miocene–Pliocene sedimentary rocks of the Carpathian foredeep (Romania). Geophys J Int 171:613–629CrossRefGoogle Scholar
  48. Verwey EJW (1939) Electronic conduction in magnetite Fe3O4 and its transition point at low temperatures. Nature 144:327–328CrossRefGoogle Scholar
  49. Wang J, Shi-He C, Wei Wu, Zhao G-M (2011a) The Curie temperature and magnetic exchange energy in half-metallic greigite Fe3S4. Phys Scr 83:045702CrossRefGoogle Scholar
  50. Wang J, Gan JA, Wong YC, Berndt CC (2011) A review of preparation, properties and applications of rare earth magnetic thin films. In: Volkerts JP (ed) Magnetic thin films: properties, performance and applications. Series: Materials science and technologies condensed matter research and technology, Nova Science Publishers, pp 1-69. ISBN: 978-1-61209-302-4Google Scholar
  51. Yamaguchi S, Wada H (1973) Fe2S3 of the spinel type structure with lattice defect. Kristall und Technik 8(9):1017–1019CrossRefGoogle Scholar
  52. Zhang ZJ, Chen XY (2009) Magnetic greigite (Fe3S4) nanomaterials: shape-controlled solvothermal synthesis and their calcination conversion into hematite (α-Fe2O3) nanomaterials. J Alloys Compd 488:339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • I. S. Lyubutin
    • 1
  • S. S. Starchikov
    • 1
  • Chun-Rong Lin
    • 2
  • Shin-Zong Lu
    • 2
  • Muhammad Omar Shaikh
    • 2
  • K. O. Funtov
    • 1
  • T. V. Dmitrieva
    • 1
  • S. G. Ovchinnikov
    • 3
    • 4
  • I. S. Edelman
    • 3
  • R. Ivantsov
    • 3
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  2. 2.Department of Mechanical Engineering, Institute of NanotechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan, Republic of China
  3. 3.Kirensky Institute of PhysicsSiberian Branch of Russian Academy of SciencesKrasnoyarskRussia
  4. 4.Institute of Engineering Physics and RadioelectronicsSiberian Federal UniversityKrasnoyarskRussia

Personalised recommendations