Advertisement

A facile approach to fabrication of novel CeO2–TiO2 core–shell nanocomposite leads to excellent UV-shielding ability and lower catalytic activity

  • Newaz Mohammed BahadurEmail author
  • Fumio Kurayama
  • Takeshi Furusawa
  • Masahide Sato
  • Iqbal Ahmed Siddiquey
  • Md. Mufazzal Hossain
  • Noboru Suzuki
Research Paper

Abstract

This study reports the development of a fast and facile route for the synthesis of novel CeO2–TiO2 core–shell nanocomposite particles using microwave (MW) irradiation of the mixture of commercial CeO2, titanium-tetra-n-butoxide (TBOT) and aqueous ammonia. Solutions of TBOT in ethanol and ammonia were mixed with dispersed CeO2 nanoparticles in ethanol, and the mixture was rapidly MW irradiated at 70 °C for 2 min. The resulting nanocomposite particles were characterized in terms of phase, shell thickness, composition, surface charge, morphology, and chemical state of the elements by XRD, TEM, XPS, SEM, Zeta potential analyzer, XRF, and FT-IR. Conventional methods of the synthesis of CeO2–TiO2 nanocomposite require a long time, and TiO2 is rarely found as a coated material. In contrast, the MW method was able to synthesize CeO2–TiO2 core–shell nanocompsite particles within a very short time. CeO2–TiO2 nanocomposite particles were fairly unaggregated with an average titania layer thickness of 2–5 nm. The obtained nanocomposites retained the crystalline cubic phase of CeO2, and the phase of coated TiO2 was amorphous. The catalytic activities of uncoated and TiO2-coated CeO2 nanoparticles for the oxidation of organic compounds were evaluated by the degradation study of methylene blue in air atmosphere at 403 K. The enhanced UV-shielding ability and visible transparency of the nanocomposite obtained by UV visible spectroscopic measurements suggested that the core–shell material has novel characteristics for using as a sunscreen material.

Keywords

Core–shell CeO2 TiO2 UV shielding property Microwave method Transmission electron microscopy 

Notes

Acknowledgments

The authors acknowledge the financial support from the Venture Business Laboratory (VBL), Utsunomiya University, Japan.

Supplementary material

11051_2012_1390_MOESM1_ESM.docx (528 kb)
Supplementary material 1 (DOCX 548 kb)

References

  1. Bahadur NM, Furusawa T, Sato M, Kurayama F, Suzuki N (2010) Rapid synthesis characterization and optical properties of TiO2 coated ZnO nanocomposite particles. Mater Res Bull 45:1383–1388CrossRefGoogle Scholar
  2. Bahadur NM, Furusawa T, Sato M, Kurayama F, Siddiquey IA, Suzuki N (2011a) Rapid one-step synthesis, characterization and functionalization of silica coated gold nanoparticles. Colloids Surf A 392:137–144CrossRefGoogle Scholar
  3. Bahadur NM, Furusawa T, Sato M, Kurayama F, Siddiquey IA, Suzuki N (2011b) Fast and facile synthesis of silica coated silver nanoparticles by microwave irradiation. J Colloid Interface Sci 355:312–320CrossRefGoogle Scholar
  4. Bêche E, Charvin P, Perarnau D, Abanades S, Flamant G (2008) Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf Interface Anal 40:264–267CrossRefGoogle Scholar
  5. Bonelli R, Albonetti S, Morandi V, Ortolani L, Riccobene PM, Scire S, Zacchini S (2011) Design of nano-sized FeOx and Au/FeOx catalysts supported on CeO2 for total oxidation of VOC. Appl Catal A 395:10–18CrossRefGoogle Scholar
  6. Chang CF, Man CY (2011) Titania-coated magnetic composites as photocatalysts for phthalate photodegradation. Ind Eng Chem Res 50:11620–11627CrossRefGoogle Scholar
  7. Chen YJ, Xiao G, Wang TS, Zhang F, Ma Y, Gao P, Zhu CL, Zhang E, Xu Z, Li QH (2011) Synthesis and enhanced gas sensing properties of crystalline CeO2/TiO2 core/shell nanorods. Sens Actuat B 156:867–874CrossRefGoogle Scholar
  8. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRefGoogle Scholar
  9. Fang J, Wang F, Qian K, Bao H, Jiang Z, Huang W (2008) Bifunctional N-doped mesoporous TiO2 photocatalysts. J Phys Chem C 112(46):18150–18156CrossRefGoogle Scholar
  10. Filippini M, Ortelli C, Svercel M, Bagheri HC (2011) Interspecies variation in survival and growth of filamentous heterotrophic bacteria in response to UVC radiation. J Photochem Photobiol B 103:234–242CrossRefGoogle Scholar
  11. Fisher MB, Love DC, Schuech R, Nelson KL (2011) Simulated sunlight action spectra for inactivation of MS2 and PRD1 bacteriophages in clear water. Environ Sci Technol 45:9249–9255CrossRefGoogle Scholar
  12. Hamdy MS, Nickels P, Abd-Elmaksood IH, Zhou H, El-Mossalamy EH, Alyoubi AO, Lynch SA, Nathan A, Thornton G (2012) Parameters controlling the photocatalytic performance of ZnO/Hombikat TiO2 composites. J Photoch Photobiol A 228(1):1–7CrossRefGoogle Scholar
  13. Hu S, Zhou F, Wang L, Zhang J (2011) Preparation of Cu2O/CeO2 heterojunction photocatalyst for the degradation of acid orange 7 under visible light irradiation. Catal Commun 12:794–797CrossRefGoogle Scholar
  14. Ji C, Yang YL, Yang Z, Tu Y, Cheng L, Chen B, Xia JP, Sun WL, Su ZL, He L, Bi ZG (2012) Perifosine sensitizes UVB-induced apoptosis in skin cells: new implication of skin cancer prevention? Cell Signal 24:1781–1789CrossRefGoogle Scholar
  15. King’ondu CK, Opembe NN, Genuino HC, Garces HF, Njagi EC, Iyer A, Huang H, Dharmarathna S, Suib SL (2011) Nonthermal synthesis of three-dimensional metal oxide structures under continuous-flow conditions and their catalytic applications. J Phys Chem C 115:23273–23282CrossRefGoogle Scholar
  16. Li G, Zhang D, Yu JC (2009) Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts. Phys Chem Chem Phys 11:3775–3782CrossRefGoogle Scholar
  17. Manová E, von Goetz N, Hauri U, Bogdal C, Hungerbühler K (2012) Organic UV filters in personal care products in Switzerland: a survey of occurrence and concentrations. Int J Hyg Environ Health. doi: 10.1016/j.ijheh.2012.08.003
  18. Masui T, Yamamoto M, Sakata T, Mori H, Adachi G (2000) Synthesis of BN-coated CeO2 fine powder as a new UV blocking material. J Mater Chem 10:353–357CrossRefGoogle Scholar
  19. Minamidate Y, Yin S, Sato T (2010) Synthesis and characterization of plate-like ceria particles for cosmetic application. Mater Chem Phys 123:516–520CrossRefGoogle Scholar
  20. Patsalas P, Logothetidis S, Metaxa C (2002) Optical performance of nanocrystalline transparent ceria films. Appl Phys Lett 81:466–468CrossRefGoogle Scholar
  21. Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP, Allison DP, Joy DC, Allison MR, Brown SD, Phelps TJ, Doktycz MJ (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76:7981–7989CrossRefGoogle Scholar
  22. Qureshi U, Dunnill CW, Parkin IP (2009) Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition. Appl Surf Sci 256:852–856CrossRefGoogle Scholar
  23. Reddy BM, Reddy GK, Ganesh I, Ferreira JMF (2009) Single step synthesis of nanosized CeO2–MxOy mixed oxides (MxOy = SiO2, TiO2, ZrO2, and Al2O3) by microwave induced solution combustion synthesis: characterization and CO oxidation. J Mater Sci 44(11):2743–2751CrossRefGoogle Scholar
  24. Santhiya D, Burghard Z, Greiner C, Jeurgens LPH, Subkowski T, Bill J (2010) Bioinspired deposition of TiO2 thin films induced by hydrophobins. Langmuir 26:6494–6502CrossRefGoogle Scholar
  25. Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 360(3):794–802CrossRefGoogle Scholar
  26. Sinha AK, Suzuki K (2005) Preparation and characterization of novel mesoporous ceria-titania. J Phys Chem B 109:1708–1714CrossRefGoogle Scholar
  27. Sklar LR, Almutawa F, Lim HW, Hamzavi I (2013) Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci. doi: 10.1039/C2PP25152C)
  28. Sronek L, Majimel J, Kihn Y, Montardi Y, Tressaud A, Feist M, Legein C, Buzare JY, Body M, Demourgues A (2007) New highly divided Ce–Ca-based oxyfluorides with UV-shielding properties: study of the Ce1−xCaxO2−x and Ce1−xCaxO2−xy/2Fy series. Chem Mater 19(21):5110–5121CrossRefGoogle Scholar
  29. Sutradhar N, Sinhamahapatra A, Pahari S, Jayachandran M, Subramanian B, Bajaj HC, Panda AB (2011) Facile low-temperature synthesis of ceria and samarium-doped ceria nanoparticles and catalytic allylic oxidation of cyclohexene. J Phys Chem C 115(15):7628–7637CrossRefGoogle Scholar
  30. Tago T, Tashiro S, Hashimoto Y, Wakabayashi K, Kishida M (2003) Synthesis and optical properties of SiO2-coated CeO2 nanoparticles. J Nano Part Res 5:55–60CrossRefGoogle Scholar
  31. Tran DT, Salmon R (2011) Potential photocarcinogenic effects of nanoparticle sunscreens. Australas J Dermato 52:1–6CrossRefGoogle Scholar
  32. Verma A, Joshi AG, Bakhshi AK, Shivaprasad SM, Agnihotry SA (2006) Variations in the structural, optical and electrochemical properties of CeO2–TiO2 films as a function of TiO2 content. Appl Surf Sci 252:5131–5142CrossRefGoogle Scholar
  33. Wang H, Zhu JJ, Liao XH, Xu S, Ding T, Chen HY (2002) Preparation of nanocrystalline ceria particles by sonochemical and microwave assisted heating methods. Phys Chem Chem Phys 4:3794–3799CrossRefGoogle Scholar
  34. Wang C, Ao Y, Wang P, Hou J, Qian J, Zhang S (2010) Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. J Hazard Mater 178:517–521CrossRefGoogle Scholar
  35. Wu NL, Fang JY, Chen M, Wu CJ, Huang CC, Hung CF (2011) Chrysin protects epidermal keratinocytes from UVA- and UVB-induced damage. J Agric Food Chem 59(15):8391–8400CrossRefGoogle Scholar
  36. Yabe S, Sato T (2003) Cerium oxide for sunscreen cosmetics. J Solid State Chem 171:7–11CrossRefGoogle Scholar
  37. Yabe S, Yamashita M, Momose S, Tahira K, Yoshida S, Li R, Yin S, Sato T (2001) Synthesis and UV-shielding properties of metal oxide doped ceria via soft solution chemical processes. Int J Inorg Mater 3(7):1003–1008CrossRefGoogle Scholar
  38. Zgheib N, Putaux JL, Thill A, D’Agosto F, Lansalot M, Lami EB (2012) Stabilization of miniemulsion droplets by cerium oxide nanoparticles: a step toward the elaboration of armored composite latexes. Langmuir 28:6163–6174CrossRefGoogle Scholar
  39. Zhao B, Shi B, Zhang X, Cao X, Zhang Y (2011) Catalytic wet hydrogen peroxide oxidation of H-acid in aqueous solution with TiO2–CeO2 and Fe/TiO2–CeO2 catalysts. Desalination 268:55–59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Newaz Mohammed Bahadur
    • 1
    • 5
    Email author
  • Fumio Kurayama
    • 3
  • Takeshi Furusawa
    • 2
  • Masahide Sato
    • 2
  • Iqbal Ahmed Siddiquey
    • 1
  • Md. Mufazzal Hossain
    • 4
  • Noboru Suzuki
    • 1
    • 2
    • 3
  1. 1.Laboratory of Powder Technology, Graduate School of Engineering, Venture Business LaboratryUtsunomiya UniversityUtsunomiyaJapan
  2. 2.Department of Advanced Interdisciplinary SciencesUtsunomiya UniversityUtsunomiyaJapan
  3. 3.Center for Optical Research & EducationUtsunomiya UniversityUtsunomiyaJapan
  4. 4.Department of ChemistryUniversity of DhakaDhakaBangladesh
  5. 5.Department of Applied Chemistry and Chemical EngineeringNoakhali Science and Technology UniversityNoakhaliBangladesh

Personalised recommendations