Strong quantum confinement effects in SnS nanocrystals produced by ultrasound-assisted method

  • Yashar Azizian-Kalandaragh
  • Ali Khodayari
  • Zaiping Zeng
  • Christos S. Garoufalis
  • Sotirios Baskoutas
  • Lionel Cervera Gontard
Research Paper


Nanocrystalline SnS powder has been prepared using tin chloride (SnCl2) as a tin ion source and sodium sulfide (Na2S) as a sulfur ion source with the help of ultrasound irradiation at room temperature. The as-synthesized SnS nanoparticles were quantitatively analyzed and characterized in terms of their morphological, structural, and optical properties. The detailed structural and optical properties confirmed the orthorhombic SnS structure and a strongly blue shifted direct band gap (1.74 eV), for synthesized nanoparticles. The measured band gap energy of SnS nanoparticles is in a fairly good agreement with the results of theoretical calculations of exciton energy based on the potential morphing method in the Hartree–Fock approximation.


Quantum confinement effect SnS Semiconductor nanoparticles X-ray diffraction Potential morphing method Ultrasound irradiation 



The support by the University of Mohaghegh Ardabili, Ardabil, Iran, to carry out this study is gratefully acknowledged. The authors (S. Baskoutas, Z. Zeng and Ch. S. Garoufalis) acknowledge the European Union (European Regional Development Fund-ERDF) and Greek national funds through the Operational Program “Regional Operational Programme” of the National Strategic Reference Framework (NSRF)-Research Funding Program: Support for research, technology and innovation actions in Region of Western Greece (MIS: 312123, D.237.002) for financial supports.


  1. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239CrossRefGoogle Scholar
  2. Azizian-Kalandaragh Y, Khodayari A (2010a) Ultrasound-assisted preparation of CdSe nanocrystals in the presence of Polyvinyl alcohol as a capping agent. Mater Sci Semicond Process 13:225–230CrossRefGoogle Scholar
  3. Azizian-Kalandaragh Y, Khodayari A (2010b) Aqueous synthesis and characterization of nearly monodispersed ZnS nanocrystals. Phys Status Solidi A 207(9):2144–2148CrossRefGoogle Scholar
  4. Azizian-Kalandaragh Y, Khodayari A, Behboudnia M (2009) Ultrasound-assisted synthesis of ZnO semiconductor nanostructures. Mater Sci Semicond Process 12:142–145CrossRefGoogle Scholar
  5. Bashkirov SA, Gremenok VF, Ivanov VA (2011) Physical properties of SnS thin films fabricated by hot wall deposition. Fizika i Tekhnika Poluprovodnikov 45:765–769Google Scholar
  6. Baskoutas S (2005a) Excitons and charged excitons in InAs nanorods. Chem Phys Lett 404:107–111CrossRefGoogle Scholar
  7. Baskoutas S (2005b) Novel formulation of the Hartree–Fock approximation: effective band gap calculation of InAs nanorods. Phys Lett A 341:303–307CrossRefGoogle Scholar
  8. Baskoutas S, Terzis AF (2006) Size-dependent band gap of colloidal quantum dots. J Appl Phys 99:013708CrossRefGoogle Scholar
  9. Baskoutas S, Poulopoulos P, Karoutsos V, Angelakeris M, Flevaris NK (2006a) Strong quantum confinement effects in thin zinc selenide films. Chem Phys Lett 417:461–464CrossRefGoogle Scholar
  10. Baskoutas S, Terzis AF, Schommers W (2006b) Size-Dependent exciton energy of narrow band gap colloidal quantum dots in the finite depth square-well effective mass approximation. J Comp Theor Nanosci 3:269–271Google Scholar
  11. Bhattacharyya S, Gedanken A (2008) A template-free, sonochemical route to porous ZnO nano-disks. Microporous Mesoporous Mater 110:553–559CrossRefGoogle Scholar
  12. Biswas S, Kar S, Chaudhuri S (2007) Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets. Appl Surf Sci 253:9259–9266CrossRefGoogle Scholar
  13. Chandrasekhar HR, Humphreys RG, Zwick U, Cardona M (1977) Infrared and Raman spectra of the IV-VI compounds SnS and SnSe. Phys Rev B 15:2177–2183CrossRefGoogle Scholar
  14. Chazali A, Zainal Z, Hussein MZ, Kassim A (1998) Cathodic electrodeposition of SnS in the presence of EDTA in aqueous media. Sol Energy Mater Sol Cells 55:237–249CrossRefGoogle Scholar
  15. Chen D, Shen G, Tang K, Lei S, Zheng H, Qian Y (2004) Microwave-assisted polyol synthesis of nanoscale SnSx (x = 1, 2) flakes. J Cryst Growth 260:469–474CrossRefGoogle Scholar
  16. El-Nahass MM, Zeyada HM, Aziz MS, El-Ghamaz NA (2002) Optical properties of thermally evaporated SnS thin films. Opt Mater 20:159–170CrossRefGoogle Scholar
  17. Engelken RD, McCloud HE, Lee C, Slayton M, Ghoreishi H (1987) Low temperature chemical precipitation and vapor deposition of Snx S thin films. J Electrochem Soc 134:2696–2707CrossRefGoogle Scholar
  18. Ghosh B, Das M, Banerjee P, Das S (2008) Fabrication and optical properties of SnS thin films by SILAR method. Appl Surf Sci 254:6436–6440CrossRefGoogle Scholar
  19. Goharshadi EK, Ding Y, Jorabchi MN, Nancarrow P (2009) Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultraso Sonochem 16:120–123CrossRefGoogle Scholar
  20. Gontard LC, Ozkaya D, Dunin-Borkowski R (2011) A simple algorithm for measuring particle size distributions on an uneven background from TEM images. Ultramicroscopy 111:101–106CrossRefGoogle Scholar
  21. Gou XL, Chen J, Shen PW (2005) Synthesis, characterization and application of SnSx (x = 1, 2) nanoparticles. Mater Chem Phys 93:557–566CrossRefGoogle Scholar
  22. Greiner W (1989) Quantum mechanics: an introduction. Springer, BerlinGoogle Scholar
  23. Guinier A (1963) X-Ray diffraction. In: Crystals, imperfect crystals, and amorphous bodies, Freeman, SanfranciscoGoogle Scholar
  24. Hanken H (1956) Nuovo Cim 3:1230Google Scholar
  25. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873CrossRefGoogle Scholar
  26. Johson JB, Jones H, Latham BS, Parker JD, Engelken RD, Barber C (1999) Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films. Semicond Sci Technol 14:501–507CrossRefGoogle Scholar
  27. Li Q, Ding Y, Wu H, Liu X, Qian Y (2002) Fabrication of layered nanocrystallites SnS and β-SnS2 via a mild solution route. Mater Res Bull 37:925–932CrossRefGoogle Scholar
  28. Liu Y, Xu Y, Li JP, Zhang B, Wu D, Sun YH (2006) Synthesis of CdSxSe1-x nanorods via a solvothermal route. Mater Res Bull 41:99–109CrossRefGoogle Scholar
  29. Liu H, Liu Y, Wang Z, He P (2010) Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology 21:105707CrossRefGoogle Scholar
  30. Mahendia S, Tomar AK, Chahal RP, Goyal P, Kumar S (2011) Optical and structural properties of poly(vinyl alcohol) films embedded with citrate-stabilized gold nanoparticles. J. Phys. D 44:205105CrossRefGoogle Scholar
  31. Nanda KK, Kruis FE, Fissan H (2004) Effective mass approximation for two extreme semiconductors: band gap of PbS and CuBr nanoparticles. J Appl Phys 95:5035–5043CrossRefGoogle Scholar
  32. Ning J, Men K, Xiao G, Wang L, Dai Q, Zou B, Liu B, Zou G (2010) Facile synthesis of IV–VI SnS nanocrystals with shape and size control: nanoparticles, nanoflowers and amorphous nanosheets. Nanoscale 2:1699–1703CrossRefGoogle Scholar
  33. Nozaki H, Onoda M, Dekita M, Kosuda K, Wada T (2005) Variation of lattice dimensions in epitaxial SnS films on MgO(001). J Solid State Chem 178:245–252CrossRefGoogle Scholar
  34. Ögüt S, Chelikowsky JR, Louie SG (1997) Quantum confinement and optical gaps in Si nanocrystals. Phys Rev Lett 79:1770–1773CrossRefGoogle Scholar
  35. Ortiz A, Alonso JC, Garcia M, Toriz J (1996) Tin sulphide films deposited by plasma-enhanced chemical vapour deposition. Semicond Sci Technol 11:243–247CrossRefGoogle Scholar
  36. Panda SK, Gorai S, Chaudhuri S (2006) Shape selective solvothermal synthesis of SnS: role of ethylenediamine–water solvent system. Mater Sci Eng B 129:265–269CrossRefGoogle Scholar
  37. Parenteau M, Carlone C (1990) Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors. Phys Rev B 41:5227–5234CrossRefGoogle Scholar
  38. Paul GS, Agarwal P (2007). Structural and stability studies of SnS nanoflakes synthesized by solvothermal process for solar photovoltaic applications. IEEE Conference Proceedings, pp. 884–886Google Scholar
  39. Paul GS, Gogoi P, Agarwal P (2008) Structural and stability studies of CdS and SnS nanostructures synthesized by various routes. J Non-Cryst Solids 354:2195–2199CrossRefGoogle Scholar
  40. Pellegrini G, Mattei G, Mazzoldi P (2005) Finite depth square well model: applicability and limitations. J Appl Phys 97:073706–073713CrossRefGoogle Scholar
  41. Poulopoulos P, Baskoutas S, Pappas SD, Garoufalis CS, Droulias SA, Zamani A, Kapaklis V (2011) Intense quantum confinement effects in Cu2O thin films. J Phys Chem C 115:14839–14843CrossRefGoogle Scholar
  42. Price LS, Parkin IP, Field MN, Hardy AME, Clark RJH, Hibbert TG, Molloy KC (2000) Atmospheric pressure chemical vapour deposition of tin(II) sulfide films on glass substrates from Bun3SnO2CCF3 with hydrogen sulfide. J Mater Chem 10:527–530CrossRefGoogle Scholar
  43. Qian XF, Zhang XM, Wang C, Wang WZ, Xie Y, Qian YT (1999) Solvent–thermal preparation of nanocrystalline tin chalcogenide. J Phys Chem Solids 60:415–417CrossRefGoogle Scholar
  44. Rama Krishna MV, Friesner RA (1991) Quantum confinement effects in semiconductor clusters. J Chem Phys 95:8309–8322CrossRefGoogle Scholar
  45. Reddy KTR, Reddy PP (2002) Structural studies on SnS films grown by a two-stage process. Mater Lett 56:108–111CrossRefGoogle Scholar
  46. Reddy NK, Reddy KTR (2006) Optical behaviour of sprayed tin sulphide thin films. Mat Res Bull 41:414–422CrossRefGoogle Scholar
  47. Reddy NK, Reddy KTR, Fisher G, Best R, Dutta PK (1999) The structural behaviour of layers of SnS grown by spray pyrolysis. J Phys D 32:988–990CrossRefGoogle Scholar
  48. Rieth M, Schommers W, Baskoutas S (2002) Exact numerical solution of Schrödinger’s equation for a particle in an interaction potential of general shape. Int J Mod Phys B 16:4081CrossRefGoogle Scholar
  49. Rudel H (2003) Case study: bioavailability of tin and tin compounds. Ecotoxicol Environ Saf 56:180–189CrossRefGoogle Scholar
  50. Suslick KS (1988) Ultrasound: its chemical, physical, and biological effects. VCH, New YorkGoogle Scholar
  51. Suslick KS (1990) Sonochemistry. Science 247:1439–1445CrossRefGoogle Scholar
  52. Suslick K, Doktycz S, Flint E (1990) On the origin of sonoluminescence and sonochemistry. Ultrasonics 28:280–290CrossRefGoogle Scholar
  53. Takeuchi K, Ichimura M, Arai E, Yamazaki Y (2003) SnS thin films fabricated by pulsed and normal electrochemical deposition. Sol Energy Mater Sol Cells 75:427–432CrossRefGoogle Scholar
  54. Tanusevski A (2003) Optical and photoelectric properties of SnS thin films prepared by chemical bath deposition. Semicond Sci Technol 18:501CrossRefGoogle Scholar
  55. Thangaraju B, Kaliannan P (2000) Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J Phys D 33:1054–1059CrossRefGoogle Scholar
  56. Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13:3843–3858CrossRefGoogle Scholar
  57. Vidal J, Lany S, d’Avezac M, Zunger A, Zakutayev A, Francis J, Tate J (2012) Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl Phys Lett 100:032104–032107CrossRefGoogle Scholar
  58. Wang Y, Herron N (1990) Quantum size effects on the exciton energy of CdS clusters. Phys Rev B 42:7253–7255CrossRefGoogle Scholar
  59. Wang H, Zhang JR, Zhao XN, Xu S, Zhu JJ (2002) Preparation of copper monosulfide and nickel monosulfide nanoparticles by sonochemical method. Mater Lett 55:253–258CrossRefGoogle Scholar
  60. Winship KA (1998) Toxicity of tin and its compounds. Adverse Drug React Acute Poisoning Rev 7:19–38Google Scholar
  61. Yue GH, Peng DL, Yan PX, Wang LS, Wang W, Luo XH (2009) Structure and optical properties of SnS thin film prepared by pulse electrodeposition. J Alloy Compd 468:254–257CrossRefGoogle Scholar
  62. Zhao Y, Zhang Z, Dang H, Liu W (2004) Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mater Sci Eng B 113:175–178Google Scholar
  63. Zhu L, Meng J, Cao X (2008) Sonochemical synthesis of monodispersed KY3F10:eu3+ nanospheres with bimodal size distribution. Mater Lett 62:3007–3009CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yashar Azizian-Kalandaragh
    • 1
  • Ali Khodayari
    • 2
  • Zaiping Zeng
    • 3
  • Christos S. Garoufalis
    • 3
    • 4
  • Sotirios Baskoutas
    • 3
  • Lionel Cervera Gontard
    • 5
  1. 1.Department of PhysicsUniversity of Mohaghegh ArdabiliArdabilIran
  2. 2.Department of ChemistryUniversity of Mohaghegh ArdabiliArdabilIran
  3. 3.Materials Science DepartmentUniversity of PatrasPatrasGreece
  4. 4.Department of Environment Technology and EcologyTechnological Institute of Ionian IslandsZakynthosGreece
  5. 5.Instituto de Ciencia de Materiales de Sevilla (CSIC)SevillaSpain

Personalised recommendations