Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study

  • S. Tavakol
  • M. R. Nikpour
  • A. Amani
  • M. Soltani
  • S. M. Rabiee
  • S. M. Rezayat
  • P. ChenEmail author
  • M. JahanshahiEmail author
Research Paper


Surface morphology, surface wettability, and size distribution of biomaterials affect their in vitro and in vivo bone regeneration potential. Since nano-hydroxyapatite has a great chemical and structural similarity to natural bone and dental tissues, incorporated biomaterial of such products could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite (23 ± 0.09 nm) and its composites with variety of chitosan content [2, 4, and 6 g (45 ± 0.19, 32 ± 0.12, and 28 ± 0.12 nm, respectively)] were prepared via an in situ hybridization route. Size distribution of the particles, protein adsorption, and calcium deposition of powders by the osteoblast cells, gene expression and percentage of new bone formation area were investigated. The highest degree of bone regeneration potential was observed in nano-hydroxyapatite powder, while the bone regeneration was lowest in nano-hydroxyapatite with 6 g of chitosan. Regarding these data, suitable size distribution next to size distribution of hydroxyapatite in bone, smaller size, higher wettability, lower surface roughness of the nano-hydroxyapatite particles and homogeneity in surface resulted in higher protein adsorption, cell differentiation and percentage of bone formation area. Results obtained from in vivo and in vitro tests confirmed the role of surface morphology, surface wettability, mean size and size distribution of biomaterial besides surface chemistry as a temporary bone substitute.


Nano-hydroxyapatite Hydroxyapatite/chitosan nanocomposites Surface topography Wettability Gene expression Histomorphometry 



This work was supported by grant from Student’s Scientific Research Center, Tehran University of Medical Sciences, Iran and Nanotechnology Research Institute in Babol University of Technology, Iran. Authors are thankful to Dr. Sharmin Kharrazi for critical reading of the manuscript.


  1. Ahmed R, Faisal N, Paradowska A, Fitzpatrick M, Khor K (2011) Neutron diffraction residual strain measurements in nanostructured hydroxyapatite coatings for orthopaedic implants. J Mech Behav Biomed Mater 4(8):2043–2054CrossRefGoogle Scholar
  2. Ao Q, Fung C, Tsui A, Cai S, Zuo H, Chan Y, Shum D (2011) The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials 32(3):787–796CrossRefGoogle Scholar
  3. Att W, Hori N, Iwasa F, Yamada M, Ueno T, Ogawa T (2009a) The effect of UV-photofunctionalization on the timerelated bioactivity of titanium and chromium-cobalt alloys. Biomaterials 30(26):4268–4276CrossRefGoogle Scholar
  4. Att W, Hori N, Takeuchi M, Ouyang J, Yang Y, Anpo M, Ogawa T (2009b) Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. Biomaterials 30(29):5352–5363CrossRefGoogle Scholar
  5. Bin L, Longnan H, Xinbo W, Jinhuan M, Fang X (2011) Biodegradation and compressive strength of phosphorylated chitosan/chitosan/hydroxyapatite bio-composites. Mater Des 32(8–9):4543–4547Google Scholar
  6. Chen J, Nan K, Yin S, Wang Y, Wu T, Zhang Q (2010) Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Colloids Surf B 81(2):640–647CrossRefGoogle Scholar
  7. Chen Y, Huang Z, Li X, Li S, Zhou Z, Zhang Y, Feng Q, Yu B (2012a) In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. J Nanomater 1–6:Article ID 401084Google Scholar
  8. Chen Y, Li S, Li X, Zhang Y, Huang Z, Feng Q, Zhou Z, Lin B, Yu B (2012b) Noninvasive evaluation of injectable chitosan/nano-hydroxyapatite/collagen scaffold via ultrasound. J Nanomater 1–7:Article ID 939821Google Scholar
  9. Chesnutt BM, Yuan Y, Buddington K, Haggard WO, Bumgardner JD (2009) Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 15(9):2571–2579CrossRefGoogle Scholar
  10. Clarke SA, Hoskins NL, Jordan GR, Henderson SA, Marsh DR (2007) In vitro testing of advanced JAX bone void filler system: species differences in the response of bone marrow stromal cells to β tri-calcium phosphate and carboxymethylcellulose gel. J Mater Sci Mater Med 18(12):2283–2290CrossRefGoogle Scholar
  11. Dalby M, David M, Mary R, Hossein A, Duncan S, Stanley A, Richard O (2006) Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 27(15):2980–2987CrossRefGoogle Scholar
  12. Fang L, Leng Y, Gao P (2005) Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications. Biomaterials 26(17):3471–3478CrossRefGoogle Scholar
  13. Hassenkam T, Fantner G, Cutroni J, Weaver J, Morse D, Hansma P (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1):4–10CrossRefGoogle Scholar
  14. Huang Z, Yu B, Feng Q, Li S, Chen Y, Luo L (2011) In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydr Polym 85(1):261–267CrossRefGoogle Scholar
  15. Kim K, Dean D, Lu A, Mikos A, Fisher J (2011) Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater 7(3):1249–1264CrossRefGoogle Scholar
  16. Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X (2005) Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res Part A 75(2):275–282CrossRefGoogle Scholar
  17. Kong L, Gao Y, Lu G, Gong Y, Zhang X (2006) A study on the bioactivity of chitosan/nano-hydroxyapatitecomposite scaffolds for bone tissue engineering. Eur Polym J 42:3171–3179CrossRefGoogle Scholar
  18. Kumar M, Muzzarelli R, Muzzarelli C, Sashiwa H, Domb A (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084CrossRefGoogle Scholar
  19. Luo X, Zhang L, Morsi Y, Zou Q, Wang Y, Gao S, Li Y (2011) Hydroxyapatite/polyamide 66 porous scaffold with an ethylene vinyl acetate surface layer used for simultaneous substitute and repair of articular cartilage and underlying bone. Appl Surf Sci 257(23):9888–9894CrossRefGoogle Scholar
  20. Manjubala I, Scheler S, Bossert J, Jandt K (2006) Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater 2(1):75–78CrossRefGoogle Scholar
  21. Mohamed K, M.El-Rashidy Z, Salamai A (2011) In-vitro properties of nano-hydroxyapatite/chitosan biocomposites. Ceram Int 37:3265–3271CrossRefGoogle Scholar
  22. Muzzarelli R (2011) Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr Polym 83(4):1433–1445CrossRefGoogle Scholar
  23. Notodihardjo FZ, Kakudo N, Kushida S, Suzuki K, Kusumoto K (2012) Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg 40(3):287–291CrossRefGoogle Scholar
  24. Qiaoling H, Baoqiang L, Mang W, Jiacong S (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 25(5):779–785CrossRefGoogle Scholar
  25. Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol 205(8–9):2785–2792CrossRefGoogle Scholar
  26. Rusu V, Ng C, Wilke M, Tiersch B, Fratzl P, Peter M (2005) Size controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26(26):5414–5426CrossRefGoogle Scholar
  27. San Thian E, Huang J, Barber Z, Best S, Bonfield W (2011) Surface modification of magnetron-sputtered hydroxyapatite thin films via silicon substitution for orthopaedic and dental applications. Surf Coat Technol 205(11):3472–3477CrossRefGoogle Scholar
  28. Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49(2):188–193CrossRefGoogle Scholar
  29. Silva G, Czeisler C, Niece K, Beniash E, Harrington D, Kessler J et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355CrossRefGoogle Scholar
  30. Tan F, Naciri M, Dowling D, Al-Rubeai M (2012) In-vitro and in-vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity. Biotechnol Adv 30(1):352–362CrossRefGoogle Scholar
  31. Tavakol S, Ragerdi Kashani I, Azami M, Khoshzaban A, Tavakol B, Kharrazi S, Ebrahimi S, Rezayat Sorkhabadi SM (2012) In vitro and in vivo investigations on bone regeneration potential of laminated hydroxyapatite/gelatin nanocomposite scaffold along with DBM. J Nanopart Res 14:1265CrossRefGoogle Scholar
  32. Teng S-H, Lee E-J, Yoon B-H, Shin D-S, Kim H-E, Oh J-S (2009) Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A 88(3):569–580Google Scholar
  33. Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M (2009) Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater 4(4):045002CrossRefGoogle Scholar
  34. Xu H, Carl S (2005) Fast setting calcium phosphate–chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26(12):1337–1348CrossRefGoogle Scholar
  35. Yim E, Pang S, Leong K (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313(9):1820–1829CrossRefGoogle Scholar
  36. Zhang L, Ao Q, Wang A, Lu G, Kong L, Gong Y (2006) A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J Biomed Mater Res Part A 77(2):277–284CrossRefGoogle Scholar
  37. Zhao F, Grayson W, Ma T, Bunnell B, Lu W (2006) Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell constructs development. Biomaterials 27(9):1859–1867CrossRefGoogle Scholar
  38. Zhao Y, Zhang Y, Ning F, Guo D, Xu Z (2007) Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J Biomed Mater Res Part B: Appl Biomater 83(1):121–126CrossRefGoogle Scholar
  39. Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7(7):2769–2781CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • S. Tavakol
    • 1
    • 2
  • M. R. Nikpour
    • 3
    • 4
  • A. Amani
    • 1
    • 9
  • M. Soltani
    • 5
  • S. M. Rabiee
    • 3
    • 6
  • S. M. Rezayat
    • 1
    • 7
    • 8
  • P. Chen
    • 5
    Email author
  • M. Jahanshahi
    • 3
    • 4
    Email author
  1. 1.Department of Medical Nanotechnology, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  2. 2.Student’s Scientific Research CenterTehran University of Medical SciencesTehranIran
  3. 3.Nanotechnology Research Institute, Nanobiotechnology Research GroupBabol University of TechnologyBabolIran
  4. 4.Faculty of Chemical EngineeringBabol University of TechnologyBabolIran
  5. 5.Department of Chemical Engineering, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooCanada
  6. 6.Faculty of Mechanical EngineeringBabol University of TechnologyBabolIran
  7. 7.Department of Toxicology & Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences BranchIslamic Azad University (IAUPS)TehranIran
  8. 8.Department of Pharmacology, Faculty of MedicineTehran University of Medical SciencesTehranIran
  9. 9.Medical Biomaterials Research CenterTehran University of Medical SciencesTehranIran

Personalised recommendations