Microscopic and dielectric studies of ZnO nanoparticles loaded in ortho-chloropolyaniline nanocomposites

  • Aashish Roy
  • Ameena Parveen
  • Raghunandan Deshpande
  • Ravishankar Bhat
  • Anilkumar Koppalkar
Research Paper

Abstract

We have studied the preparation of zinc oxide nanoparticles loaded in various weight percentages in ortho-chloropolyaniline by in situ polymerization method. The length of the O-chloropolyaniline tube is found to be 200 nm and diameter is about 150 nm wherein the embedded ZnO nanoparticles is of 13 nm as confirmed from scanning electron microscopy as well as transmission electron microscopy characterizations. The presence of the vibration band of the metal oxide and other characteristic bands confirms that the polymer nanocomposites are characterized by their Fourier transmission infrared spectroscopy. The X-ray diffraction pattern of nanocomposites reveals their polycrystalline nature. Electrical property of nanocomposites is a function of the filler as well as the matrix. Cole–Cole plots reveal the presence of well-defined semicircular arcs at high frequencies which are attributed to the bulk resistance of the material. Among all nanocomposites, 30 wt% shows the low relaxation time of 151 s, and hence it has high conductivity.

Keywords

Nanocomposites Ortho-chloropolyaniline Zinc oxide Scanning electron microscopy Transmission electron microscopy 

References

  1. Baskoutas S, Bester G (2011) Transition in the optical emission polarization of ZnO nanorods. J Phys Chem C 115:15862–15867CrossRefGoogle Scholar
  2. Bekri-Abbes I, Srasra E (2010) Characterization and AC conductivity of polyaniline–montmorillonite nanocomposites synthesized by mechanical/chemical reaction. React Funct Polym 70:11–18CrossRefGoogle Scholar
  3. Blaszkiewicz M, McLachian DS, Newnham R (1992) The volume fraction and temperature dependence of the resistivity in carbon black and graphite polymer composites: an effective media-percolation approach. J Polym Eng Sci 32:421–425CrossRefGoogle Scholar
  4. Bouropoulos N, Psarras GC, Moustakas N, Chrissanthopoulos A, Baskoutas S (2008) Optical and dielectric properties of ZnO–PVA nanocomposites. Phys Status Solidif A 205:2033–2037CrossRefGoogle Scholar
  5. Chrissanthopoulos A, Baskoutas S, Bouropoulos N, Dracopoulos V, Tasis D, Yannopoulos SN (2007) Novel ZnO nanostructures grown on carbon nanotubes by thermal evaporation. Thin Solid Films 515:8524–8528CrossRefGoogle Scholar
  6. Chrissanthopoulos A, Baskoutas S, Bouropoulos N, Dracopoulos V, Poulopoulos P, Yannopoulos SN (2011) Synthesis and characterization of ZnO/NiO p–n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photonics Nanostruct Fundam Appl 9:132–139CrossRefGoogle Scholar
  7. Cui Y, Wei QQ, Park HK, Liberia CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292CrossRefGoogle Scholar
  8. Ibrahima AA, Darb GN, Zaidia SA, Umara A, Abakerb M, Bouzidb H, Baskoutasd S (2012) Growth and properties of Ag-doped ZnO nanoflowers for highly sensitive phenyl hydrazine chemical sensor application. Talanta 93:257–263CrossRefGoogle Scholar
  9. Klingshrin C (2007) ZnO: material, physics, applications. Chem Phys Chem 8:782–803CrossRefGoogle Scholar
  10. Koch U, Fojtik A, Weller H (1985) Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem Phys Let 122:507–510CrossRefGoogle Scholar
  11. Kondawar SB, Hedau MJ, Tabhane VA, Dongre SP, Mahatme UB, Mondal RA (2006) Characterizations of zinc oxide nanoparticles reinforced conducting polyaniline composites. Mod Phys Let B 20:1461–1470CrossRefGoogle Scholar
  12. Kryszewaski M (1991) Heterogeneous conducting polymeric systems: dispersions, blends, crystalline conducting networks—an introductory presentation. Synth Met 45:289–296CrossRefGoogle Scholar
  13. Kunteppa H, Roy AS, Koppalkar AR, Prasad MVNA (2010) Synthesis and morphological change in poly (ethylene oxide): sodium chlorate based polymer electrolyte complex with polyaniline. Phys B 406:3997–4162CrossRefGoogle Scholar
  14. Luo J, Huang HG, Zhang HP, Wu LL, Lin ZH, Hepel M (2000) Studies on photoelectrochemistry of nano-particulate TiO2/PANI/PATP film on Au electrodes. J New Mat Electrochem Syst 3:249–252Google Scholar
  15. Luo J, Huaiguo H, Zhonghua L, Maria H (2002) Photoelectrochemical behavior of p-ATP/PANI film and nanoparticulate p-ATP/ PANI/ TiO2 film on Au electrodes. In: Rubinson JF, Mark HB Jr (eds) ACS symposium series 832. Conducting polymers and polymer electrolytes from biology to photovoltaics. American Chemical Society, Washington, DCGoogle Scholar
  16. Ma P, Mo S, Tang B, Kim J (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48:1824–1834CrossRefGoogle Scholar
  17. MacDiarmid AG, Epstein AJ (1989) Charge transfer in polymeric system. Faraday Discuss Chem Soc 88:317–332CrossRefGoogle Scholar
  18. McCall RP, Grinder JM, Leng JM (1990) Spectroscopy and defect states in polyaniline. Spectroscopy and defect states in polyaniline. Phys Rev B 41:5202–5213CrossRefGoogle Scholar
  19. Patil SL, Pawar SG, Chougule MA, Raut BT, Godse PR, Sen S, Patil VB (2012) Structural, morphological, optical, and electrical properties of PANI–ZnO nanocomposites. Int J Polym Mater 61:809–820CrossRefGoogle Scholar
  20. Pethkar S, Patil RC, Kher JA (1999) Deposition and characterization of CdS nanoparticle/polyaniline composite films. Thin Solid Films 349:105–109CrossRefGoogle Scholar
  21. Roy AS, Anilkumar KR (2011) Core-shell method of synthesis, characterizations, and ac conductivity studies of polyaniline/n-TiO2 composites. J Appl Poly Sci 121:675–680CrossRefGoogle Scholar
  22. Roy AS, Anilkumar KR (2012) Studies of AC conductivity and dielectric relaxation behavior of CdO-doped nanometric polyaniline. J Appl Poly Sci 123:1928–1934CrossRefGoogle Scholar
  23. Shi S, Zhang L, Li J (2009) Electrical and dielectric properties of multiwall carbon nanotube/polyaniline composites. J Polym Res 16:395–399CrossRefGoogle Scholar
  24. Skotheim T, Marcel D (1986) Handbook of conducting polymers, vol 1–2. Marcel Dekker, New YorkGoogle Scholar
  25. Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol–gel process: quantized. J Am Chem Soc 113:2826–2833CrossRefGoogle Scholar
  26. Stafstrom S, Bredas JL, Epstein AJ (1987) Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys Rev Lett 59:1464–1467CrossRefGoogle Scholar
  27. Stoyanov H, Kollosche M, Risse S, McCarthy DN, Kofod G (2011) Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control. Soft Matter 7:194–202CrossRefGoogle Scholar
  28. Tseng C, Chou Y, Liu C, Liu Y, Ger M, Shu Y (2012) Microwave-assisted hydrothermal synthesis of zinc oxide particles starting from chloride precursor. Mater Res Bull 47:96–100CrossRefGoogle Scholar
  29. Wang ZL (2004) Nanostrtured of zinc oxide. Mater Today 7:26–33CrossRefGoogle Scholar
  30. Zhang WZ, Park BJ, Choi HJ (2010) Colloidal graphene oxide/polyaniline nanocomposite and its electrorheology. Chem Commun 46:5596–5598CrossRefGoogle Scholar
  31. Zuo F, Angelopoulos M, MacDiarmid AG (1987) Transport studies of protonated emeraldine polymer: a granular polymeric metal system. Phys Rev B 36:3475–3478CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Aashish Roy
    • 1
  • Ameena Parveen
    • 2
  • Raghunandan Deshpande
    • 3
  • Ravishankar Bhat
    • 5
  • Anilkumar Koppalkar
    • 4
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of PhysicsFirst Grade Degree CollegeGuirmethkal, YadgirIndia
  3. 3.Department of Pharmaceutical ChemistryH.K.E. Society’s Matoshree Taradevi Institute of Pharmaceutical SciencesGulbargaIndia
  4. 4.Department of PhysicsS. S. Margol CollegeShahabadIndia
  5. 5.Department of Materials Science, Nanotechnology LaboratoryGulbarga UniversityGulbargaIndia

Personalised recommendations