Advertisement

A facile route to synthesize nanogels doped with silver nanoparticles

  • M. Carme Coll Ferrer
  • Robert C. FerrierJr.
  • David M. Eckmann
  • Russell J. CompostoEmail author
Brief Communication

Abstract

In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core–shell polymer host containing silver nanoparticles. First, the nanogels (NG, ~160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, ~5 nm) are synthesized “in situ” in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

Keywords

Dextran Lysozyme Nanogel Silver nanoparticles 

Notes

Acknowledgments

We acknowledge the support of NIH Grants R01 HL060230 and T32 HL007954 and NSF Grants DMR09-07493 and DMR11-20901. The authors thank M. A. Caporizzo for assistance in AFM and Dr. A.R. McGhie for helpful discussions.

Supplementary material

11051_2012_1323_MOESM1_ESM.tif (23.1 mb)
TEM micrographs of (a–c) NG-Ag5, (d–f) NG-Ag10 and (g–i) NG-Ag 25. The histograms for NG distribution are given in (g) NG-Ag5, (k) NG-Ag10 and (m) NG-Ag25 whereas the histograms for Ag NPs size distribution are given in (h) NG-Ag5, (l) NG-Ag10 and (n) NG-Ag25. The red lines are Gaussian fits. The average particle size of NG-Ag5, NG-Ag10 and NG-Ag25 are 86 ± 16, 86 ± 14 and 85 ± 20 nm whereas the average particle size of Ag NPs in NG-Ag5, NG-Ag10 and NG-Ag25 are 4.2 ± 1.2, 4.2 ± 1.1 and 4.6 ± 1.7 nm, respectively (TIFF 23631 kb)
11051_2012_1323_MOESM2_ESM.tif (7.4 mb)
TGA curves for NG-Ag2 and NG-Ag25 in air as prepared. All samples were dried at 100 °C prior to heating (TIFF 7611 kb)

References

  1. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12CrossRefGoogle Scholar
  2. Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Inter 1(7):1553–1560CrossRefGoogle Scholar
  3. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668CrossRefGoogle Scholar
  4. Ferrer MCC, Hickok NJ, Eckmann DM, Composto RJ (2012) Antibacterial biomimetic hybrid films. Soft Matter 8(8):2423–2431Google Scholar
  5. Ferrer MCC, Sobolewski P, Eckmann DM, Composto R J (2013) Cellular uptake and intracellular cargo release from dextran based nanogel drug carriers. J Nanotechnol Eng MedGoogle Scholar
  6. Hucknall DJ (1974) Selective oxidation of hydrocarbons. Academic Press, Inc., LondonGoogle Scholar
  7. James C, Johnson AL, Jenkins ATA (2011) Antimicrobial surface grafted thermally responsive PNIPAM-co-ALA nano-gels. Chem Commun 47(48):12777–12779CrossRefGoogle Scholar
  8. Li J, Yu SY, Yao P, Jiang M (2008) Lysozyme–dextran core–shell nanogels prepared via a green process. Langmuir 24(7):3486–3492CrossRefGoogle Scholar
  9. Lu L, Sun RWY, Chen R, Hui CK, Ho CM, Luk JM, Lau GKK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Ther 13(2):253–262Google Scholar
  10. Lu RQ, Yang DP, Cui DX, Wang ZY, Guo L (2012) Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int J Nanomed 7(1):2101–2107CrossRefGoogle Scholar
  11. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353CrossRefGoogle Scholar
  12. Nair LS, Laurencin CT (2007) Silver nanoparticles: synthesis and therapeutic applications. J Biomed Nanotechnol 3(4):301–316CrossRefGoogle Scholar
  13. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83CrossRefGoogle Scholar
  14. Shanmukh S, Jones L, Zhao YP, Driskell JD, Tripp RA, Dluhy RA (2008) Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Anal Bioanal Chem 390(6):1551–1555CrossRefGoogle Scholar
  15. Southward RE, Stoakley DM (2001) Reflective and electrically conductive surface silvered polyimide films and coatings prepared via unusual single-stage self-metallization techniques. Prog Org Coat 41(1–3):99–119CrossRefGoogle Scholar
  16. Sun XP, Luo YL (2005) Preparation and size control of silver nanoparticles by a thermal method. Mater Lett 59(29–30):3847–3850CrossRefGoogle Scholar
  17. Vaidyanathan R, Kalishwaralal K, Gopalram S, Gurunathan S (2009) Nanosilver—the burgeoning therapeutic molecule and its green synthesis (Retracted article. see vol. 28, pp. 940, 2010). Biotechnol Adv 27(6):924–937 (Retracted article. See vol. 28, pp. 940, 2010)CrossRefGoogle Scholar
  18. Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV (2006) A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res 341(12):2012–2018CrossRefGoogle Scholar
  19. Wong KKY, Liu X (2010) Silver nanoparticles—the real “silver bullet” in clinical medicine? Medchemcomm 1(2):125–131CrossRefGoogle Scholar
  20. Wu W, Zhou T, Berliner A, Banerjee P, Zhou S (2010) Smart core–shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery. Chem Mater 22(6):1966–1976CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • M. Carme Coll Ferrer
    • 1
    • 2
  • Robert C. FerrierJr.
    • 3
  • David M. Eckmann
    • 2
  • Russell J. Composto
    • 1
    Email author
  1. 1.Department of Materials ScienceUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Anesthesiology and Critical CareUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations