Controlled adsorption of cytochrome c to nanostructured gold surfaces

  • Inês Gomes
  • Maria J. Feio
  • Nuno C. Santos
  • Peter Eaton
  • Ana Paula Serro
  • Benilde Saramago
  • Eulália Pereira
  • Ricardo FrancoEmail author
Research Paper


Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV– visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.


Self-assembled monolayers Alkanethiols Gold surfaces Gold nanoparticles Cytochrome c Quartz crystal microbalance Zeta-potential Atomic force microscopy 



Financial support was provided by Fundação para a Ciência e a Tecnologia (FCT/MEC), Portugal, under Grants PEst-C/EQB/LA0006/2011 to MJF, PE, EP, and RF; and PTDC/CTM-NAN/112241/2009 to RF; and PEst-OE/QUI/UI0100/2011 to APS and BS. IG is a recipient of a FCT/MEC post-doctoral fellowship (SFRH/BPD/63850/2009). The authors thank the Centro de Materiais da Universidade do Porto (CEMUP), for allowing the use of the multimode AFM, and Prof. António Fernando Silva and CIQUP, Laboratório de Química Analítica, Faculdade de Ciências, Universidade do Porto for allowing the use of the PicoLE AFM.


  1. Aubin-Tam ME, Hamad-Schifferli K (2005) Gold nanoparticle cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21(26):12080–12084CrossRefGoogle Scholar
  2. Bain CD, Whitesides GM (1988) Molecular-level control over surface order in self-assembled monolayer films of thiols on gold. Science 240(4848):62–63CrossRefGoogle Scholar
  3. Banci L, Bertini I, Rosato A, Varani G (1999) Mitochondrial cytochromes c: a comparative analysis. J Biol Inorg Chem 4(6):824–837CrossRefGoogle Scholar
  4. Baptista P, Doria G, Henriques D, Pereira E, Franco R (2005) Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J Biotechnol 119(2):111–117CrossRefGoogle Scholar
  5. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950CrossRefGoogle Scholar
  6. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21(20):9303–9307CrossRefGoogle Scholar
  7. Bunz UHF, Rotello VM (2010) Gold nanoparticle-fluorophore complexes: sensitive and discerning “noses” for biosystems sensing. Angewandte Chemie-Int Ed 49(19):3268–3279CrossRefGoogle Scholar
  8. Carmody WR (1961) Easily prepared wide range buffer series. J Chem Educ 38(11):559. doi: 10.1021/ed038p559 CrossRefGoogle Scholar
  9. Chah S, Hammond MR, Zare RN (2005) Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem Biol 12(3):323–328CrossRefGoogle Scholar
  10. de la Fuente JM, Penades S (2006) Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine and material science. Biochim Biophys Acta 1760(4):636–651CrossRefGoogle Scholar
  11. De M, Rana S, Akpinar H, Miranda OR, Arvizo RR, Bunz UHF, Rotello VM (2009) Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat Chem 1(6):461–465CrossRefGoogle Scholar
  12. Domingues MM, Santiago PS, Castanho MA, Santos NC (2008) What can light scattering spectroscopy do for membrane-active peptide studies? J Pept Sci 14(4):394–400. doi: 10.1002/psc.1007 CrossRefGoogle Scholar
  13. Doria G, Baumgartner BG, Franco R, Baptista PV (2010) Optimizing Au-nanoprobes for specific sequence discrimination. Colloid Surf B 77(1):122–124CrossRefGoogle Scholar
  14. Fears KP, Creager SE, Latour RA (2008) Determination of the surface pK of carboxylic- and amine-terminated alkanethiols using surface plasmon resonance spectroscopy. Langmuir 24(3):837–843CrossRefGoogle Scholar
  15. Gomes I, Santos NC, Oliveira LMA, Quintas A, Eaton P, Pereira E, Franco R (2008) Probing surface properties of cytochrome c at Au bionanoconjugates. J Phys Chem C 112(42):16340–16347Google Scholar
  16. Haiss W, Thanh NT, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 79(11):4215–4221. doi: 10.1021/ac0702084 CrossRefGoogle Scholar
  17. Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloids Surf B 2(6):517–566. doi: 10.1016/0927-7765(94)80066-9 CrossRefGoogle Scholar
  18. Heering HA, Wiertz FGM, Dekker C, de Vries S (2004) Direct immobilization of native yeast Iso-1 Cytochrome c on bare gold: fast electron relay to redox enzymes and zeptomole protein-film voltammetry. J Am Chem Soc 126(35):11103–11112. doi: 10.1021/ja046737w CrossRefGoogle Scholar
  19. Hulko M, Hospach I, Krasteva N, Nelles G (2011) Cytochrome C biosensor—a model for gas sensing. Sensors 11(6):5968–5980CrossRefGoogle Scholar
  20. Imabayashi S, Mita T, Kakiuchi T (2005) Effect of the electrostatic interaction on the redox reaction of positively charged cytochrome C adsorbed on the negatively charged surfaces of acid-terminated alkanethiol monolayers on a Au(111) electrode. Langmuir 21(4):1470–1474CrossRefGoogle Scholar
  21. Ipe BI, Shukla A, Lu HC, Zou B, Rehage H, Niemeyer CM (2006) Dynamic light-scattering analysis of the electrostatic interaction of hexahistidine-tagged cytochrome P450 enzyme with semiconductor quantum dots. ChemPhysChem 7(5):1112–1118CrossRefGoogle Scholar
  22. Jiang X, Jiang UG, Jin YD, Wang EK, Dong SJ (2005) Effect of colloidal gold size on the conformational changes of adsorbed cytochrome c: probing by circular dichroism, UV-visible, and infrared spectroscopy. Biomacromolecules 6(1):46–53CrossRefGoogle Scholar
  23. Kaufman ED, Belyea J, Johnson MC, Nicholson ZM, Ricks JL, Shah PK, Bayless M, Pettersson T, Feldoto Z, Blomberg E, Claesson P, Franzen S (2007) Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and zeta-potential measurements. Langmuir 23(11):6053–6062CrossRefGoogle Scholar
  24. Keating CD, Kovaleski KM, Natan MJ (1998) Protein : colloid conjugates for surface enhanced Raman scattering: stability and control of protein orientation. J Phys Chem B 102(47):9404–9413CrossRefGoogle Scholar
  25. Kluck RM, BossyWetzel E, Green DR, Newmeyer DD (1997a) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303):1132–1136CrossRefGoogle Scholar
  26. Kluck RM, Martin SJ, Hoffman BM, Zhou JS, Green DR, Newmeyer DD (1997b) Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J 16(15):4639–4649CrossRefGoogle Scholar
  27. Lin S, Jiang X, Wang L, Li G, Guo L (2011) Adsorption orientation of horse heart cytochrome c on a bare gold electrode hampers its electron transfer. J Phys Chem C 116(1):637–642. doi: 10.1021/jp2063782 CrossRefGoogle Scholar
  28. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7(4):914–920CrossRefGoogle Scholar
  29. Louie GV, Brayer GD (1990) High-resolution refinement of yeast Iso-1-cytochrome-C and comparisons with other eukaryotic cytochromes-C. J Mol Biol 214(2):527–555CrossRefGoogle Scholar
  30. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. P Natl Acad Sci USA 105(38):14265–14270CrossRefGoogle Scholar
  31. Mandal HS, Kraatz HB (2007) Effect of the surface curvature on the secondary structure of peptides adsorbed on nanoparticles. J Am Chem Soc 129(20):6356–6357CrossRefGoogle Scholar
  32. Millo D, Bonifacio A, Ranieri A, Borsari M, Gooijer C, van der Zwan G (2007) pH-Induced changes in adsorbed cytochrome c. voltammetric and surface-enhanced resonance Raman characterization performed simultaneously at chemically modified silver electrodes. Langmuir 23(19):9898–9904CrossRefGoogle Scholar
  33. Murgida DH, Hildebrandt P (2004) Electron-transfer processes of cytochrome c at interfaces. New insights by surface-enhanced resonance Raman spectroscopy. Acc Chem Res 37(11):854–861CrossRefGoogle Scholar
  34. Nakano K, Yoshitake T, Yamashita Y, Bowden EF (2007) Cytochrome c self-assembly on alkanethiol monolayer electrodes as characterized by AFM, IR, QCM, and direct electrochemistry. Langmuir 23(11):6270–6275CrossRefGoogle Scholar
  35. Phillips RL, Miranda OR, You CC, Rotello VM, Bunz UHF (2008) Rapid and efficient identification of bacteria using gold-nanoparticle - Poly(para-phenyleneethynylene) constructs. Angewandte Chemie-Int Ed 47(14):2590–2594CrossRefGoogle Scholar
  36. Rieder R, Bosshard HR (1980) Comparison of the binding-sites on cytochrome-C for cytochrome-C oxidase, cytochrome-Bc1, and cytochrome-C1 - differential acetylation of lysyl residues in free and complexed cytochrome-C. J Biol Chem 255(10):4732–4739Google Scholar
  37. Scott RA, Mauk AG (1995) Cytochrome c: a multidisciplinary approach. University Science Books, SausalitoGoogle Scholar
  38. Serro AP, Carapeto A, Paiva G, Farinha JPS, Colaço R, Saramago B (2011) Formation of an intact liposome layer adsorbed on oxidized gold confirmed by three complementary techniques: QCM-D, AFM and confocal fluorescence microscopy. Surface and Interface Analysis:n/a-n/a. doi: 10.1002/sia.3820
  39. Shang L, Wang YZ, Jiang JG, Dong SJ (2007) pH-dependent protein conformational changes in albumin : gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23(5):2714–2721CrossRefGoogle Scholar
  40. Sperling RA, Rivera gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908CrossRefGoogle Scholar
  41. Srivastava S, Verma A, Frankamp BL, Rotello VM (2005) Controlled assembly of protein-nanoparticle composites through protein surface recognition. Adv Mater 17(5):617–621CrossRefGoogle Scholar
  42. Vargo ML, Gulka CP, Gerig JK, Manieri CM, Dattelbaum JD, Marks CB, Lawrence NT, Trawick ML, Leopold MC (2010) Distance dependence of electron transfer kinetics for azurin protein adsorbed to monolayer protected nanoparticle film assemblies. Langmuir 26(1):560–569CrossRefGoogle Scholar
  43. Vörös J (2004) The density and refractive index of adsorbing protein layers. Biophys J 87(1):553–561CrossRefGoogle Scholar
  44. Wang L, Waldeck DH (2008) Denaturation of cytochrome c and its peroxidase activity when immobilized on SAM films. J Phys Chem C 112(5):1351–1356CrossRefGoogle Scholar
  45. Wegerich F, Turano P, Allegrozzi M, Möhwald H, Lisdat F (2009) Cytochrome c mutants for superoxide biosensors. Anal Chem 81(8):2976–2984. doi: 10.1021/ac802571h CrossRefGoogle Scholar
  46. Yin H, Zhou Y, Liu T, Cui L, Ai S, Qiu Y, Zhu L (2010) Amperometric nitrite biosensor based on a gold electrode modified with cytochrome c on Nafion and Cu-Mg-Al layered double hydroxides. Microchim Acta 171(3):385–392. doi: 10.1007/s00604-010-0444-8 CrossRefGoogle Scholar
  47. You CC, De M, Rotello VM (2005) Mono layer-protected nanoparticle-protein interactions. Curr Opin Chem Biol 9(6):639–646CrossRefGoogle Scholar
  48. Zhang D, Neumann O, Wang H, Yuwono VM, Barhoumi A, Perham M, Hartgerink JD, Wittung-Stafshede P, Halas NJ (2009) Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett 9(2):666–671CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Inês Gomes
    • 1
    • 2
  • Maria J. Feio
    • 3
  • Nuno C. Santos
    • 2
  • Peter Eaton
    • 3
  • Ana Paula Serro
    • 4
    • 5
  • Benilde Saramago
    • 4
  • Eulália Pereira
    • 3
  • Ricardo Franco
    • 1
    Email author
  1. 1.REQUIMTE, Departamento de QuímicaFaculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparicaPortugal
  2. 2.Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisboaPortugal
  3. 3.REQUIMTE, Departamento de Química e BioquímicaFaculdade de Ciências da Universidade do PortoPortoPortugal
  4. 4.Centro de Química Estrutural, Instituto Superior TécnicoLisboaPortugal
  5. 5.Instituto Superior de Ciências da Saúde Egas MonizCaparicaPortugal

Personalised recommendations