Advertisement

Seed-mediated growth and manipulation of Au nanorods via size-controlled synthesis of Au seeds

  • Juncheng Liu
  • Jennifer N. Duggan
  • Joshua Morgan
  • Christopher B. Roberts
Research Paper

Abstract

Seed-mediated growth of gold (Au) nanorods with highly controllable length, width, and aspect ratio was accomplished via carefully size-controlled synthesis of the original Au seeds. A slow dynamic growth of Au nanoparticle seeds was observed after reduction of the Au salt (i.e., hydrogen tetrachloroaurate (III) hydrate) by sodium borohydride (NaBH4) in the presence of cetyltrimethyl ammonium bromide (CTAB). As such, the size of the Au nanoparticle seeds can therefore be manipulated through control over the duration of the reaction period (i.e., aging times of 2, 8, 48, 72, and 144 h were used in this study). These differently sized Au nanoparticles were subsequently used as seeds for the growth of Au nanorods, where the additions of Au salt, CTAB, AgNO3, and ascorbic acid were employed. Smaller Au nanoparticle seeds obtained via short growth/aging time resulted in Au nanorods with higher aspect ratio and thus longer longitudinal surface plasmon wavelength (LSPW). The larger Au nanoparticle seeds obtained via longer growth/aging time resulted in Au nanorods with lower aspect ratio and shorter LSPW.

Keywords

Seed-mediated growth Gold Au Au nanorods Au nanoparticles Aging time Cetyltrimethyl ammonium bromide CTAB Longitudinal surface plasmon wavelength LSPW 

Notes

Acknowledgments

The authors appreciate the helpful assistance of Dr. Michael E. Miller with the TEM imaging. The authors would also like to gratefully acknowledge the financial support from the Green Chemistry Institute—ACS Petroleum Research Fund, the United States Department of Energy, and the United States Department of Agriculture.

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830. doi: 10.103/nature01937 CrossRefGoogle Scholar
  2. Borodko Y, Habas SE, Koebel M, Yang P, Frei H, Somorjai G (2006) Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J Phys Chem B 110:23052–23059. doi: 10.1021/jp063338 CrossRefGoogle Scholar
  3. Brown KR, Natan MJ (1998) Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14:726–728. doi: abs/10.1021/la970982u CrossRefGoogle Scholar
  4. Burda C, Chen X, Narayanan R, El-Sayed M (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi: 10.1021/cr030063a CrossRefGoogle Scholar
  5. Cheng W, Dong S, Wang E (2005) Spontaneous fractal aggregation of gold nanoparticles and controlled generation of aggregate-biased fractal networks at air/water interface. J Phys Chem B 109:19213–19218. doi: 10.1021/jp052255a CrossRefGoogle Scholar
  6. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase synthesis of inorganic nanoparticles. Chem Rev 104:3893–3946. doi: 10.1021/Cr030027b CrossRefGoogle Scholar
  7. El-Sayed M (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264Google Scholar
  8. El-Sayed M (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37:326–333Google Scholar
  9. Enustun BV, Turkevich J (1963) Coagulation of colloidial gold. J Am Chem Soc 85:3317. doi: 10.1021/ja00904a001 CrossRefGoogle Scholar
  10. Fan FR, Liu DY, Wu YF, Duan S, Xie ZX, Jiang ZY, Tian ZQ (2008) Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc 130:6949–6951. doi: 10.1021/ja801566d CrossRefGoogle Scholar
  11. Fu YZ, Du YK, Yang P, Li JR, Jiang L (2007) Shape-controlled synthesis of highly monodisperse and small Size gold nanoparticles. Sci China B 50. doi: 10.1007/s11426-007-0085-x
  12. Gole A, Murphy CJ (2004) Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater 16:3633–3640. doi: 10.1021/cm0492336 CrossRefGoogle Scholar
  13. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791. doi: 10.1039/b711490g CrossRefGoogle Scholar
  14. Habas SE, Lee H, Radmilovic V, Somorjai G, Yang P (2007) Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6:692–697. doi: 10.1038/nmat1957 CrossRefGoogle Scholar
  15. Haes AJ, Stuart D, Nie S, Van Duyne RP (2004) Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluores 14:355–367. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15617378 Google Scholar
  16. He F, Liu J, Roberts CB, Zhao D (2009) One-step “green” synthesis of Pd nanoparticles of controlled size and their catalytic activity for trichloroethene hydrodechlorination. Ind Eng Chem Res 48:6550–6557. doi: 10.1021/ie801962fCCC CrossRefGoogle Scholar
  17. Henglein A (1999) Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir 15:6738–6744. doi: 10.1021/la9901579 CrossRefGoogle Scholar
  18. Hiemenz PC (1997) Principles of colloid and surface chemistry, chap 10, 3rd edn. Wiley, New YorkGoogle Scholar
  19. Huang X, El-Sayed IH, Qian W, El-Sayed M (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. doi: 10.1021/ja057254a CrossRefGoogle Scholar
  20. Huang X, Jain PK, El-Sayed IH, El-Sayed M (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228. doi: 10.1007/s10103-007-0470-x CrossRefGoogle Scholar
  21. Jana NR, Gearheart L, Murphy CJ (2001a) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322. doi: 10.1021/cm000662n CrossRefGoogle Scholar
  22. Jana NR, Gearheart L, Murphy CJ (2001b) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786. doi: 10.1021/la0104323 CrossRefGoogle Scholar
  23. Jiang J, Bosnick K, Maillard M, Brus L (2003) Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J Phys Chem B 107:9964–9972. doi: 10.1021/jp034632u CrossRefGoogle Scholar
  24. Jiang W, Papa E, Fischer H, Mardyani S, Chan WCW (2004) Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotechnol 22:607–609. doi: 10.1016/j.tibtech.2004.10.012 CrossRefGoogle Scholar
  25. Johnson CJ, Dujardin E, Davis S, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770. doi: 10.1039/b200953f CrossRefGoogle Scholar
  26. Li L, Hu J, Yang W, Alivisatos P (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1:349–351. doi: 10.1021/nl015559r CrossRefGoogle Scholar
  27. Liu J, He F, Gunn TM, Zhao D, Roberts CB (2009) Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach. Langmuir: ACS J Surf Colloids 25:7116–7128. doi: 10.1021/la900228d CrossRefGoogle Scholar
  28. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870. doi: 10.1021/jp0516846 CrossRefGoogle Scholar
  29. Murphy C, Gole A, Hunyadi S, Orendorff C (2006) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45:7544–7554. doi: 10.1021/ic0519382 CrossRefGoogle Scholar
  30. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE (2008a) Chemical sensing and imaging with metallic nanorods. Chem Commun 544–557. doi: 10.1039/b711069c
  31. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008b) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730. doi: 10.1021/ar800035u CrossRefGoogle Scholar
  32. Ni W, Kou X, Yang Z, Wang J (2008) Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2:677–686. doi: 10.1021/nn7003603 CrossRefGoogle Scholar
  33. Nie S (1997) Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275:1102–1106. doi: 10.1126/science.275.5303.1102 CrossRefGoogle Scholar
  34. Niesz K, Grass M, Somorjai G (2005) Precise control of the Pt nanoparticle size by seeded growth using EO13PO30EO13 triblock copolymers as protective agents. Nano Lett 5:2238–2240. doi: 10.1021/nl051561x CrossRefGoogle Scholar
  35. Nikoobakht B, El-Sayed M (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 12:6368–6374. doi: 10.1021/la010530o CrossRefGoogle Scholar
  36. Nikoobakht B, El-Sayed M (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962. doi: 10.1021/cm020732l CrossRefGoogle Scholar
  37. Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J (2009) Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J Am Chem Soc 131:697–703. doi: 10.1021/ja804115r CrossRefGoogle Scholar
  38. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994. doi: 10.1021/jp0570972 CrossRefGoogle Scholar
  39. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos A (2000) Shape control of CdSe nanocrystals. Nature 404:59–61. doi: 10.1038/35003535 CrossRefGoogle Scholar
  40. Perezjuste J, Pastorizasantos I, Lizmarzan L, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901. doi: 10.1016/j.ccr.2005.01.030 CrossRefGoogle Scholar
  41. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649. doi: 10.1021/ja047846d CrossRefGoogle Scholar
  42. Sau TK, Pal A, Jana NR, Wang ZL, Pal T (2001a) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanopart Res 3:257–261. doi: 10.1023/A:1017567225071 CrossRefGoogle Scholar
  43. Sau TK, Pal A, Pal T (2001b) Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B 105:9266–9272. doi: 10.1021/jp011420t CrossRefGoogle Scholar
  44. Smith DK, Korgel B (2008) The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir: ACS J Surf Colloids 24:644–649. doi: 10.1021/la703625a CrossRefGoogle Scholar
  45. Turkevich J (1985) Colloidal gold. Part II. Gold Bull 18:125–131. doi: 10.1007/BF03214694 CrossRefGoogle Scholar
  46. Van der Zande B, Bohmer M (2000) Colloidal dispersions of gold rods: synthesis and optical properties. Langmuir 16:451. doi: 10.1021/la990425 CrossRefGoogle Scholar
  47. Vijaykumar T, Sanketh R, Kulkarni GU (2007) Polar-solvent mediated phase-transfer of nanocrystals of metals and semiconductors from an aqueous to an organic phase. Chem Phys Lett 436:167–170. doi: 10.1016/j.cplett.2007.01.015 CrossRefGoogle Scholar
  48. Wang ZL, Mohamed MB, Link S, El-Sayed M (1999) Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf Sci 440:L809–L814. doi: 10.1016/S0039-6028(99)00865-1 CrossRefGoogle Scholar
  49. Wang ZL, Gao RP, Nikoobakht B, El-Sayed M (2000) Surface reconstruction of the unstable 110 surface in gold nanorods. J Phys Chem B 104:5417–5420. doi: 10.1021/jp000800w CrossRefGoogle Scholar
  50. Weissleder R (2001) A clearer vision for in vivo imaging progress continues in the development of smaller, more penetrable probes for biological imaging. Nat Biotechnol 19:316–317. doi: 10.1038/86684 CrossRefGoogle Scholar
  51. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589. doi: 10.1038/nature06917 CrossRefGoogle Scholar
  52. Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chemistry A 11:454–463. doi: 10.1002/chem.200400927 Google Scholar
  53. Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–10676. doi: 10.1021/ar7000974 CrossRefGoogle Scholar
  54. Xiao C, Ding H, Shen C, Yang T, Hui C, Gao H (2009) Shape-controlled synthesis of palladium nanorods and their magnetic properties. J Phys Chem C 113:13466–13469. doi: 10.1021/jp902005j CrossRefGoogle Scholar
  55. Xiong Y, Wiley BJ, Xia Y (2007) Nanocrystals with unconventional shapes—a class of promising catalysts. Angew Chem Int Ed Engl 46:7157–7159. doi: 10.1002/anie.200702473 CrossRefGoogle Scholar
  56. Yu C, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79:572–579. doi: 10.1021/ac061730d CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Juncheng Liu
    • 1
  • Jennifer N. Duggan
    • 1
  • Joshua Morgan
    • 1
  • Christopher B. Roberts
    • 1
  1. 1.Department of Chemical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations