Polymeric nanoparticles as OCT contrast agents

  • Wa’el Al Rawashdeh
  • Stefan Kray
  • Andrij Pich
  • Sascha Pargen
  • Andreea Balaceanu
  • Markus Lenz
  • Felix Spöler
  • Fabian Kiessling
  • Wiltrud Lederle
Research Paper

Abstract

In this study, the optical properties of two nano-sized polymer colloids in optical coherence tomography (OCT) were compared in vitro with respect to their potential use as contrast agents. We used two types of particles: compact hydrophobic spherical polystyrene (PS) particles and soft water-swollen nanogel (NG) particles both with grafted hydrophilic shell, both prepared at two different sizes (PS at 300 and 150 nm, NG at 300 and 200 nm). The OCT backscattering signals of the particles in a vessel-mimicking highly scattering agar/TiO2 phantom were compared on either number of particles or weight percent. Larger particles and higher concentrations produced higher OCT contrast. At each concentration tested, a markedly higher contrast was achieved by PS particles than NG particles. PS particles generated a markedly higher OCT contrast than the phantom at concentrations of at least 1 × 1010 or 0.1 % for PS 300 nm and at least 3 × 1011 particles/mL or 0.4 % for PS 150 nm. The contrast generated by NG 300 nm was above the phantom contrast at concentrations of at least 3 × 1011 particles/mL or 1 %, whereas NG 200 nm only at 4 %. At any given weight percent, the differences in OCT contrast between differently sized particles were much less evident than in the comparison based on particle number. PS 300 nm generated also a good contrast ex vivo on chicken muscle tissue. These results strongly suggest that PS spheres have strong potential as intravascular OCT contrast agent, while NG particles need further contrast enhancer for being used as OCT contrast agent.

Keywords

Optical coherence tomography Polystyrene spheres Nanogels Contrast agent 

Notes

Acknowledgments

This research was supported by the German center for interdisciplinary clinical research IZKF and HighTech.NRW/EU-Ziel 2-Programm (EFRE) 2007-2013 (ForSaTum). AP and AB acknowledge financial support provided by Volkswagen Foundation.

Supplementary material

11051_2012_1255_MOESM1_ESM.tif (16 mb)
Fig. S1 Comparison between PS 150 nm and gold nanorods (GNRs) at 0.1 % weight percent. OCT image of both particle types showing the higher contrast intensity achieved by the PS in comparison to the GNRs. The lower arrows demonstrate the strong decrease in contrast of the GNRs due to the plasmon resonance effect, whereas the contrast of the PS particles remains markedly stronger in the lower area. (TIFF 16355 kb)

References

  1. Andrade JD, Hlady V (1986) Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses. Adv Polym Sci 79:1–63CrossRefGoogle Scholar
  2. Boyko V, Pich A, Lu Y, Richter S, Arndt K-F, Adler H-J (2003) Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 1. Synthesis and characterization. Polymer 44:7821–7827CrossRefGoogle Scholar
  3. Capek I (2000) Surface active properties of polyoxyethylene macromonomers and their role in radical polymerization in disperse systems. Adv Colloid Interface Sci 88(3):295–357CrossRefGoogle Scholar
  4. Fujimoto JG (2003) Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21(11):1361–1367CrossRefGoogle Scholar
  5. Jesser CA, Boppart SA, Pitris C, Stamper DL, Petur Nielsen G, Brezinski ME, Fujimoto JG (1999) High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology. Br J Radiol 72:1170–1176Google Scholar
  6. Kray S, Spöler F, Först M, Kurz H (2009a) High-resolution simultaneous dual-band spectral domain optical coherence tomography. Opt Lett 34(13):1970–1972CrossRefGoogle Scholar
  7. Kray S, Spöler F, Kurz H (2009b) Improved contrast in clinical imaging, SPIE Newsroom. doi:10.1117/2.1200909.1809 (online article only)
  8. Leo Li Y, Seekell K, Yuan H, Robles FE, Wax A (2012) Multispectral nanoparticle contrast agents for true-color spectroscopic optical coherence tomography. Biomed Opt Exp 3(8):1914–1923CrossRefGoogle Scholar
  9. Li J, Carlsson J, Huang SC, Caldwell KD (1996) Adsorption of Poly(ethylene oxide)-Containing block copolymers . A route to protein resistance. In: Glass JE (ed) Hydrophilic polymers: performance with environmental acceptability, ACS advances in chemistry series 248. American Chemical Society, Washington, DC, pp 61–78. doi: 10.1021/ba-1996-0248.ch004 CrossRefGoogle Scholar
  10. Oldenburg A, Zweifel DA, Xu C, Wei A, Boppart S (2005) Characterization of plasmon-resonance gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system. Plasmonics in Biology and Medicine II Proceedings of SPIE, vol 5703, pp 50–60Google Scholar
  11. Pargen S, Willems C, Keul H, Pich A, Möller M (2012) Surfactant-free synthesis of polystyrene nanoparticles using oligoglycidol macromonomers. Macromolecules 45:1230–1240CrossRefGoogle Scholar
  12. Pich A, Lu Y, Adler HJ (2003a) Preparation of PEGMA-functionalized latex particles: 1-system styrene/PEGMA. Colloid Polym Sci 281:907–915CrossRefGoogle Scholar
  13. Pich A, Lu Y, Boyko V, Arndt K, Adler HJ (2003b) Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 2. Incorporation of polypyrrole. Polymer 44:7651–7659CrossRefGoogle Scholar
  14. Pich A, Berger S, Ornatsky O, Baranov V, Winnik M (2009) The influence of PEG-Macromonomers on the size and properties of thermosensitive aqueous microgels. Colloid Polym Sci 287(3):269–275CrossRefGoogle Scholar
  15. Schmitt J (1999) Optical coherence tomography (OCT): a review. IEEE J Sel Top Quantum Electr 5(4):1205–1215CrossRefGoogle Scholar
  16. Sirotkina MA, Shirmanova MV, Bugrova ML, Elagin V, Agrba PA, Kirillin MY, Kamensky VA, Zagaynova EV (2010) Continuous optical coherence tomography monitoring of nanoparticles accumulation in biological tissue. J Nanopart Res 13(1):283–291CrossRefGoogle Scholar
  17. Spöler F, Kray S, Grychtol P, Hermes B, Bornemann J, Först M, Kurz H (2007) Simultaneous dual-band ultra-high resolution optical coherence tomography. Opt Exp 15(17):10832–10841CrossRefGoogle Scholar
  18. Thümmler K, Häntzschel N, Skapenko A, Schulz-Koops H, Pich A (2010) Surfactant-free poly(styrene-co-glycidyl methacrylate) particles with surface-bound antibodies for activation and proliferation of human T cells. Bioconjug Chem 21:867–874CrossRefGoogle Scholar
  19. Troutman TS, Barton JK, Romanowski M (2007) Optical coherence tomography with plasmon resonant nanorods of gold. Opt Lett 32(11):1438–1440CrossRefGoogle Scholar
  20. Vakoc BJ, Fukumura D, Jain RK, Bouma B (2012) Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer 12:363–368CrossRefGoogle Scholar
  21. Wang RK, Xu X, Tuchin V, Elder J (2001) Concurrent enhancement of imaging depth contrast for optical coherence tomography by hyperosmotic agents. J Opt Soc Am B 18(7):948–953CrossRefGoogle Scholar
  22. Wei M, Qian J, Zhan Q, Cai F, Gharibi A, He S (2009) Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods. Front Optoelectron China 2(2):141–145CrossRefGoogle Scholar
  23. Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol 7:1–9CrossRefGoogle Scholar
  24. Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebtsov BN, Orlova AG, Balalaeva IV, Sirotkina MA, Bugrova ML, Agrba PD, Kamensky VA (2008) Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 53:4995–5009CrossRefGoogle Scholar
  25. Zotter S, Pircher M, Torzicky T, Bonesi M, Götzinger E, Leitgeb RA, Hitzenberger CK (2011) Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography. Opt Exp 19(2):1217–1227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Wa’el Al Rawashdeh
    • 1
  • Stefan Kray
    • 2
  • Andrij Pich
    • 3
  • Sascha Pargen
    • 3
  • Andreea Balaceanu
    • 3
  • Markus Lenz
    • 2
  • Felix Spöler
    • 2
  • Fabian Kiessling
    • 1
  • Wiltrud Lederle
    • 1
  1. 1.Experimental Molecular ImagingRWTH Aachen UniversityAachenGermany
  2. 2.Institute for Semiconductor ElectronicsRWTH Aachen UniversityAachenGermany
  3. 3.Interactive Material Research (DWI)RWTH Aachen UniversityAachenGermany

Personalised recommendations