Applications of polymeric micelles with tumor targeted in chemotherapy

  • Hui Ding
  • Xiaojun Wang
  • Song Zhang
  • Xinli LiuEmail author


Polymeric micelles (PMs) have gained more progress as a carrier system with the quick development of biological and nanoparticle techniques. In particular, PMs with smart targeting can deliver anti-cancer drugs directly into tumor cells at a sustained rate. PMs with core–shell structure (with diameters of 10 ~ 100 nm) have been prepared by a variety of biodegradable and biocompatible polymers via a self-assembly process. The preparation of polymeric micelles with stimuli-responsive block copolymers or modification of target molecules on polymeric micelles’ surface are able to significantly improve the efficiency of drug delivery. Polymeric micelles, which have been considered as a novel promising drug carrier for cancer therapeutics, are rapidly evolving and being introduced in an attempt to overcome several limitations of traditional chemotherapeutics, including water solubility, tumor-specific accumulation, anti-tumor efficacy, and non-specific toxicity. This review describes the preparation of polymeric micelles and the targeted modification which greatly enhance the effects of chemotherapeutic agents.


Polymeric micelles Chemotherapy Tumor targeting Stimuli-responsive micelles 


  1. Agut W, Brulet A, Schatz C, Taton D, Lecommandoux S (2010) pH and temperature responsive polymeric micelles and polymersomes by self-assembly of poly [2-(dimethylamino) ethyl methacrylate]-b-Poly (glutamic acid) double hydrophilic block copolymers. Langmuir 26:10546–10554CrossRefGoogle Scholar
  2. Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) New frontiers in nanotechnology for cancer treatment. Urol Oncol 26:74–85CrossRefGoogle Scholar
  3. Bae YH (2009) Drug targeting and tumor heterogeneity. J Control Release 133:2–3CrossRefGoogle Scholar
  4. Böhmer MR, Klibanov AL, Tiemann K, Hall CS, Gruell H, Steinbach OC (2009) Ultrasound triggered image-guided drug delivery. Eur J Radiol 70:242–253CrossRefGoogle Scholar
  5. Boisseau P, Loubaton B (2011) Nanomedicine, nanotechnology in medicine. CR Phys 12:620–636CrossRefGoogle Scholar
  6. Brewer E, Coleman J, Lowman A (2011) Emerging technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater. doi: 10.1155/2011/408675 Google Scholar
  7. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823. doi: 10.1038/nnano.2011.166 CrossRefGoogle Scholar
  8. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146.
  9. Eckman AM, Tsakalozou E, Kang NY, Ponta A, Bae Y (2012) Drug release patterns and cytotoxicity of PEG-poly (aspartate) block copolymer micelles in cancer cells. Pharm Res 29:1755–1767CrossRefGoogle Scholar
  10. Finger EC, Giaccia AJ (2010) Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metast Rev 29:285–293. doi: 10.1007/s10555-010-9224-5 CrossRefGoogle Scholar
  11. Fournier E, Dufresne MH, Smith DC, Ranger M, Leroux JC (2004) A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm Res 21:962–968CrossRefGoogle Scholar
  12. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188Google Scholar
  13. Gong J, Chen M, Zheng Y, Wang S, Wang Y (2012) Polymeric micelles drug delivery system in oncology. J Control Release 159:312–323. Google Scholar
  14. Gourevich D, Gerold B, Arditti F, Xu D, Liu D, Volovick A, Wang L, Medan Y, Gnaim J, Prentice P (2012) Ultrasound activated nano-encapsulated targeted drug delivery and tumour cell poration. Nano Biotechnol Biomed Diagn Res 733:135–144CrossRefGoogle Scholar
  15. Grande R, Carvalho AJF (2011) Compatible ternary blends of chitosan/poly (vinyl alcohol)/poly (lactic acid) produced by oil-in-water emulsion processing. Biomacromolecules 12:907–914CrossRefGoogle Scholar
  16. Gullotti E, Yeo Y (2009) Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6:1041–1051CrossRefGoogle Scholar
  17. Hammond PT (2011) Virtual issue on nanomaterials for drug delivery. ACS Nano 5:681–684. doi: 10.1021/Nn2003508 CrossRefGoogle Scholar
  18. He J, Zhou Z, Fan Y, Zhou X, Du H (2011) Sustained release of low molecular weight heparin from PLGA microspheres prepared by a solid-in-oil-in-water emulsion method. J Microencapsul 28:763–770CrossRefGoogle Scholar
  19. Hua SH, Li YY, Liu Y, Xiao W, Li C, Huang FW, Zhang XZ, Zhuo RX (2010) Self-assembled micelles based on PEG-polypeptide hybrid copolymers for drug delivery. Macromol Rapid Comm 31:81–86. doi: 10.1002/marc.200900473 CrossRefGoogle Scholar
  20. Hui G, Ma Y, Lu X, Liang Y, Chen B, Ma J (2011) pH-responsive nano-assemblies of amino poly (glycerol methacrylate). Eur Polym J 47:1232–1239CrossRefGoogle Scholar
  21. Jin Q, Liu G, Ji J (2010) Preparation of reversibly photo-cross-linked nanogels from pH-responsive block copolymers and use as nanoreactors for the synthesis of gold nanoparticles. Eur Polym J 46:2120–2128CrossRefGoogle Scholar
  22. Jones MC, Leroux JC (1999) Polymeric micelles-a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111CrossRefGoogle Scholar
  23. Jungnickel C, Łuczak J, Ranke J, Fernández JF, Müller A, Thöming J (2008) Micelle formation of imidazolium ionic liquids in aqueous solution. Colloid Surf A Physicochem Eng Asp 316:278–284CrossRefGoogle Scholar
  24. Katsogiannou M, Peng L, V Catapano C, Rocchi P (2011) Active-targeted nanotherapy strategies for prostate cancer. Curr Cancer Drug Targets 11:954–965. Google Scholar
  25. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6:714–729.
  26. Kim S, Lee J (2010) Effective polymeric dispersants for vacuum, convection and freeze drying of drug nanosuspensions. Int J Pharm 397:218–224CrossRefGoogle Scholar
  27. Kim GJ, Nie S (2005) Targeted cancer nanotherapy. Mater Today 8:28–33CrossRefGoogle Scholar
  28. Kim E, Jung Y, Choi H, Yang J, Suh JS, Huh YM, Kim K, Haam S (2010a) Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31:4592–4599CrossRefGoogle Scholar
  29. Kim JK, Yang SY, Lee Y, Kim Y (2010b) Functional nanomaterials based on block copolymer self-assembly. Prog Polym Sci 35:1325–1349CrossRefGoogle Scholar
  30. Kim S, Shi Y, Kim JY, Park K, Cheng JX (2010c) Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv 7:49–62. doi: 10.1517/17425240903380446 CrossRefGoogle Scholar
  31. Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K (1997) Block copolymer micelles for drug delivery: loading and release of doxorubicin. J Control Release 48:195–201CrossRefGoogle Scholar
  32. Lee H, Fonge H, Hoang B, Reilly RM, Allen C (2010) The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharmaceut 7:1195–1208CrossRefGoogle Scholar
  33. Liang H, Tang J, Halliwell M (2010) Sonoporation, drug delivery, and gene therapy. P I Mech Eng H 224:343–361CrossRefGoogle Scholar
  34. Liao C, Sun Q, Liang B, Shen J, Shuai X (2010) Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80:699–705Google Scholar
  35. Lin JP, Zhu JQ, Chen T, Lin SL, Cai CH, Zhang LS, Zhuang Y, Wang XS (2009) Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials 30:108–117CrossRefGoogle Scholar
  36. Liu F, Park JY, Zhang Y, Conwell C, Liu Y, Bathula SR, Huang L (2010) Targeted cancer therapy with novel high drug-loading nanocrystals. J Pharm Sci 99:3542–3551CrossRefGoogle Scholar
  37. Liu Y, Sun J, Cao W, Yang J, Lian H, Li X, Sun Y, Wang Y, Wang S, He Z (2011) Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm 421:160–169CrossRefGoogle Scholar
  38. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284. Google Scholar
  39. Matsumura Y (2010) Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Deliv Rev 63:184–192CrossRefGoogle Scholar
  40. Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100:572–579CrossRefGoogle Scholar
  41. Mikhail AS, Allen C (2009) Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release 138:214-223.
  42. Minko T (2012) Receptor mediated delivery systems for cancer therapeutics. Fundam Appl Contr Release Drug Deliv 4:329–355CrossRefGoogle Scholar
  43. Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomed Nanotechnol Biol Med 6:9-24.
  44. Miyata K, Christie RJ, Kataoka K (2010) Polymeric micelles for nano-scale drug delivery. React Funct Polym. doi: 10.1016/j.reactfunctpolym.2010.10.009 Google Scholar
  45. Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J. doi: 10.1016/j.jsps.2011.04.001 Google Scholar
  46. Nakayama M, Okano T (2011) Multi-targeting cancer chemotherapy using temperature-responsive drug carrier systems. React Funct Polym. doi: 10.1016/j.reactfunctpolym.2010.08.006 Google Scholar
  47. Parveen S, Misra R, Sahoo SK (2011) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol Biol Med 8:147–166.
  48. Pasut G, Veronese FM (2009) PEG conjugates in clinical development or use as anticancer agents: An overview. Adv Drug Deliv Rev 61:1177–1188.
  49. Patravale V, Date AA, Kulkarni R (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56:827–840CrossRefGoogle Scholar
  50. Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. doi: 10.1038/nnano.2007.387 Google Scholar
  51. Polyak K, Haviv I, Campbell IG (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet. doi: 10.1016/j.tig.2008.10.012 Google Scholar
  52. Ponta A, Bae Y (2010) Peg-poly (amino acid) block copolymer micelles for tunable drug release. Pharm Res 27:2330–2342CrossRefGoogle Scholar
  53. Qian F, Huang J, Hussain MA (2010) Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 99:2941–2947Google Scholar
  54. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990CrossRefGoogle Scholar
  55. Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276CrossRefGoogle Scholar
  56. Ren TB, Feng Y, Zhang ZH, Li L, Li YY (2011) Shell-sheddable micelles based on star-shaped poly (ε-caprolactone)-SS-poly (ethyl glycol) copolymer for intracellular drug release. Soft Matter 7:2329–2331CrossRefGoogle Scholar
  57. Seigneuric R, Markey L, Nuyten SA, Dubernet DC, Evelo TAC, Finot E, Garrido C (2010) From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med 10:640–652CrossRefGoogle Scholar
  58. Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M (2010) Multi-stage delivery nano-particle systems for therapeutic applications. BBA-Gen subjects 1810:317–329.
  59. Simnick AJ, Amiram M, Liu W, Hanna G, Dewhirst MW, Kontos CD, Chilkoti A (2011) In vivo tumor targeting by a NGR decorated micelle of a recombinant diblock copolypeptide. J Control Release 155:144–151CrossRefGoogle Scholar
  60. Song Z, Feng R, Sun M, Guo C, Gao Y, Li L, Zhai G (2011) Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci 354:116–123CrossRefGoogle Scholar
  61. Soppimath KS, Tan DCW, Yang YY (2005) pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery. Adv Mater 17:318–323CrossRefGoogle Scholar
  62. Stohrer M, Boucher Y, Stangassinger M, Jain RK (2000) Oncotic pressure in solid tumors is elevated. Cancer Res 60:4251–4255Google Scholar
  63. Strehlitz B, Reinemann C, Linkorn S, Stoltenburg R (2011) Aptamers for pharmaceuticals and their application in environmental analytics. Bioanal Rev 4:1–30. doi: 10.1007/s12566-011-0026-1 CrossRefGoogle Scholar
  64. Talekar M, Kendall J, Denny W, Garg S (2011) Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drug 22:949–962. doi: 10.1097/CAD.0b013e32834a4554 CrossRefGoogle Scholar
  65. Talelli M, Hennink WE (2011) Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine. doi: 10.2217/nnm.11.91 Google Scholar
  66. Talelli M, Rijcken CJF, Oliveira S, der Meel R, Henegouwen PMP, Lammers T, van Nostrum CF, Storm G, Hennink WE (2011) Nanobody-shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting. J Control Release 151:183–192CrossRefGoogle Scholar
  67. Tanaka T, Decuzzi P, Cristofanilli M, Sakamoto JH, Tasciotti E, Robertson FM, Ferrari M (2009) Nanotechnology for breast cancer therapy. Biomed Microdevices 11:49–63CrossRefGoogle Scholar
  68. Torchilin VP (2010) Antinuclear antibodies with nucleosome-restricted specificity for targeted delivery of chemotherapeutic agents. Ther Deliv 2:257–272. doi: 10.4155/TDE.10.30 CrossRefGoogle Scholar
  69. Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58:97–110CrossRefGoogle Scholar
  70. Wang L, Zeng R, Li C, Qiao RZ (2009) Self-assembled polypeptide-block-poly(vinylpyrrolidone) as prospective drug-delivery systems. Colloid Surf B 74:284–292CrossRefGoogle Scholar
  71. Wang X, Wang B, Zhang Q (2011) Anti-tumor targeted drug delivery systems mediated by aminopeptidase N/CD13. Acta Pharm Sin B 1:80–83.
  72. Wei H, Cheng SX, Zhang XZ, Zhuo RX (2009) Thermo-sensitive polymeric micelles based on poly (<i>N</i>-isopropylacrylamide) as drug carriers. Prog Polym Sci 34:893–910CrossRefGoogle Scholar
  73. Xiao L, Xiong X, Sun X, Zhu Y, Yang H, Chen H, Gan L, Xu H, Yang X (2011) Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles. Biomaterials 32:5148–5157CrossRefGoogle Scholar
  74. Xiao Z, Frieder J, Teply BA, Farokhzad OC (2012) Aptamer conjugates: emerging delivery platforms for targeted cancer therapy. Drug Deliv Oncol 1263–1281. doi: 10.1002/9783527634057.ch39
  75. Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079CrossRefGoogle Scholar
  76. Yang M, Wang P, Huang CY, Ku MS, Liu H, Gogos C (2010) Solid dispersion of acetaminophen and poly (ethylene oxide) prepared by hot-melt mixing. Int J Pharm 395:53–61CrossRefGoogle Scholar
  77. Yang K, Yang CH, Li Z (2011) Synthesis and Characterization of PVA/MMT Porous Nanocomposite Prepared by Directional Freeze-Drying Method. Adv Material Res 197:253–260CrossRefGoogle Scholar
  78. Yin H, Bae YH (2009) Physicochemical aspects of doxorubicin-loaded pH-sensitive polymeric micelle formulations from a mixture of poly (l-histidine)-b-poly (l-lactide)-b-poly (ethylene glycol). Eur J Pharm Biopharm 71:223–230CrossRefGoogle Scholar
  79. Yokoyama M (2010) Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv 7:145–158CrossRefGoogle Scholar
  80. Yokoyama M (2011) Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. J Exp Clin Med 3:151–158. 2011.06.002Google Scholar
  81. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Seto T, Kataoka K (1992) Preparation of micelle-forming polymer drug conjugates. Bioconjug Chem 3:295–301CrossRefGoogle Scholar
  82. Yoshitomi T, Hirayama A, Nagasaki Y (2011) The ROS scavenging and renal protective effects of pH-responsive nitroxide radical-containing nanoparticles. Biomaterials 32:8021–8028CrossRefGoogle Scholar
  83. You JO, Almeda D, Ye GJC, Auguste DT (2010) Bioresponsive matrices in drug delivery. J Biol Eng 4:15. doi: 10.1186/1754-1611-4-15 CrossRefGoogle Scholar
  84. Zaman NT, Yang YY, Ying JY (2010) Stimuli-responsive polymers for the targeted delivery of paclitaxel to hepatocytes. Nano Today 5:9–14CrossRefGoogle Scholar
  85. Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W (2010) Cyclic RGD conjugated poly (ethylene glycol)-co-poly (lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release 143:136–142CrossRefGoogle Scholar
  86. Zhang L, Zhu S, Qian L, Pei Y, Qiu Y, Jiang Y (2011) RGD-modified PEG-PAMAM-DOX Conjugates: in vitro and In vivo Studies for Glioma. Eur J Pharm Biopharm 79:232–240CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Hui Ding
    • 1
  • Xiaojun Wang
    • 1
  • Song Zhang
    • 1
  • Xinli Liu
    • 1
    • 2
    Email author
  1. 1.Shandong Provincial Key Laboratory of Microbial EngineeringShandong Polytechnic UniversityJinanPeople’s Republic of China
  2. 2.Food and Bioengineering InstituteShandong Polytechnic UniversityJinanPeople’s Republic of China

Personalised recommendations