Advertisement

The direct writing and focusing of nanoparticles generated by an electrical discharge

  • E. SalehEmail author
  • M. Praeger
  • A. S. Vaughan
  • W. Stewart
  • W. H. Loh
Research Paper

Abstract

Direct writing aims to deposit materials onto substrates in localised positions. In this paper, we demonstrate a new method for direct writing of nanoparticles at ambient-air-pressure. An electrical discharge is used to generate gold nanoparticles of the order of 10 nm diameter, which are then transported and ‘focused’ by an electric field in air, through the process of electric field-assisted diffusion, as opposed to normal ballistic focusing since the mean free path in air is very short. This process is novel and allows for practical normal atmospheric-pressure focused deposition of nanoparticles. The focusing mechanism is capable of producing patterned arrays of deposited nanoparticles with widths that are less than 10 % of the diameter of the focusing apparatus; in the present experimental configuration, gold spots with diameters of a few tens of micrometres were achieved, with ultimate size being limited by transverse diffusion and by charged particle mutual repulsion. In this study, the process of generating nanoparticles from bulk material, transporting and focusing these particles takes place in one operation, which is a key advantage in rapid prototyping and manufacturing techniques.

Keywords

Direct writing Electrical discharge Generating nanoparticles Focusing Nanoparticles 

Notes

Acknowledgments

The authors gratefully acknowledge funding support from EPSRC (Engineering and Physical Sciences Research Council) under the GlassJet Printer project, and the EPSRC Centre for Innovative Manufacturing in Photonics at the University of Southampton, UK.

References

  1. Ahmed Z, Rasekh M, Edirisinghe M (2010) Electrohydrodynamic direct writing of biomedical polymers and composites. Macromol Mater Eng 295:315–319CrossRefGoogle Scholar
  2. Banerjee P, Conklin D, Nanayakkara S, Park T, Therien M, Bonnell D (2010) Plasmon-induced electrical conduction in molecular devices. Am Chem Soc Nano 4(2):1019–1025Google Scholar
  3. Boddu S, Gutti V, Ghosh T, Tompson R, Loyalka S (2011) Gold, silver, and palladium nanoparticle/nano-agglomerate generation, collection, and characterization. J Nanopart Res 13:6591–6601CrossRefGoogle Scholar
  4. Chen C, Wang J, Tsai F, Lu Y, Kiang Y, Yang C (2009) Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors. Opt Express 17(16):p14186–p14198CrossRefGoogle Scholar
  5. Cushing B, Kolesnichenko V, O’Connor C (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:p3893–p3946CrossRefGoogle Scholar
  6. DiBitonto D, Eubank P, Patel M, Barrufet M (1989) Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J Appl Phys 66(9):4095–4103CrossRefGoogle Scholar
  7. Greene J, Guerrero-Alvarez L (1974) Electro-erosion of metal surfaces. Metall Trans 5:695CrossRefGoogle Scholar
  8. Hung J, Yang T, Li K (2011) Studies on the fabrication of metallic bipolar plates—Using micro electrical discharge machining milling. J Power Sour 196:2070–2074CrossRefGoogle Scholar
  9. Jayasinghe S, Edirisinghe M, Wilde T (2002) A novel ceramic printing technique based on electrostatic atomization of a suspension. Mater Res Innov 6:92–95CrossRefGoogle Scholar
  10. Jayasinghe S, Wang D, Edirisinghe M (2005) Instrument for electrohydrodynamic print-patterning three-dimensional complex structures. Rev Sci Instrum 76:075105CrossRefGoogle Scholar
  11. Jeanvoine N, Holzapfel C, Soldera F, Mücklich F (2008) Microstructure characterisation of electrical discharge craters using FIB/SEM dual beam techniques. Adv Eng Mater 10(10):973–977CrossRefGoogle Scholar
  12. Jennings S (1988) The mean free path in air. J Aerosol Sci 19(2):159–166CrossRefGoogle Scholar
  13. Jiang Q, Lu H (2005) Surface tension and its temperature coefficient for liquid metals. J Phys Chem B 109:15463–15468CrossRefGoogle Scholar
  14. Khan S, Doh Y, Khan A, Rahman A, Choi K, Kim D (2011) Direct patterning and electrospray deposition through EHD for fabrication of printed thin film transistors. Curr Appl Phys 11:s271–s279CrossRefGoogle Scholar
  15. Lastow O, Balachandran W (2007) Novel low voltage EHD spray nozzle for atomization of water in the cone jet mode. J Electrostat 65(8):490–499CrossRefGoogle Scholar
  16. Li D, Herricks T, Xia Y (2003) Magnetic nanofibers of nickel ferrite prepared by electrospinning. Appl Phys Lett 83(22):4586–4588CrossRefGoogle Scholar
  17. Lung J, Huang J, Tien D, Liao C, Tseng K, Tsung T, Kao W, Tsai T, Jwo C, Lin H, Stobinski L (2007) Preparation of gold nanoparticles by arc discharge in water. J Alloy Compd 434–435:655–658CrossRefGoogle Scholar
  18. Marginean I, Parvin L, Heffernan L, Vertes A (2004) Flexing the electrified meniscus: the birth of a jet in electrosprays. Anal Chem 76:4202–4207CrossRefGoogle Scholar
  19. Park J, Hardy M, Kang S, Barton K, Adair K, Mukhopadhyay D, Lee C, Strano M, Alleyne A, Georgiadis J, Ferreira P, Rogers J (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6(10):782–789CrossRefGoogle Scholar
  20. Park J, Lee J, Paik U, Lu Y, Rogers J (2010) Nanoscale electrified liquid jets for high-resolution printing of charge. Nano Lett 10:584–591CrossRefGoogle Scholar
  21. Patel M, Barrufet M, Eubank P, Dibitonto D (1989) Theoretical models of the electrical discharge machining process.II. The anode erosion model. J Appl Phys 66(9):4104–4111CrossRefGoogle Scholar
  22. Praeger M, Saleh E, Vaughan A, Stewart W, Loh W (2012) Fabrication of nanoscale glass fibers by electrospinning. Appl Phys Lett 100:063114CrossRefGoogle Scholar
  23. Qian X, Peng X, Ansari D, Yin-Goen Q, Chen G, Shin D, Yang L, Young A, Wang M, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90CrossRefGoogle Scholar
  24. Rahman K., Wellsa D., Duignana T (2000) Laser Direct-Write of Materials for Microelectronics Applications, MRS Proceedings, Vol 624Google Scholar
  25. Reneker D, Yarin A, Zussman E, Xu H (2007) Electrospinning of Nanofibers from Polymer Solutions and Melts. Adv Appl Mech 41:43–195CrossRefGoogle Scholar
  26. Sageman D, Burnet G (1974) Predicting the surface tension of liquid metals. J Inorg Nucl Chem 36:1105–1107CrossRefGoogle Scholar
  27. Salah N, Ghanem G, Atig K (2008) Thermal and mechanical numerical modelling of electric discharge machining process. Commun Numer Methods Eng 24:2021–2034CrossRefGoogle Scholar
  28. Salata O (2005) Tools of nanotechnology: electrospray. Curr Nanosci 1:25–33CrossRefGoogle Scholar
  29. Tabrizi N, Ullmann M, Vons V, Lafont U, Schmidt-Ott A (2009) Generation of nanoparticles by spark discharge. J Nanopart Res 11:315–332CrossRefGoogle Scholar
  30. Zhang J (2010) Biomedical applications of shape-controlled plasmonic nanostructures: a Case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J Phys Chem Lett 1:686–695CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • E. Saleh
    • 1
    Email author
  • M. Praeger
    • 1
  • A. S. Vaughan
    • 2
  • W. Stewart
    • 1
  • W. H. Loh
    • 1
  1. 1.Optoelectronics Research CentreUniversity of SouthamptonSouthamptonUK
  2. 2.Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations