Evaluating three direct-reading instruments based on diffusion charging to measure surface area concentrations in polydisperse nanoaerosols in molecular and transition regimes

  • S. Bau
  • O. Witschger
  • F. Gensdarmes
  • D. Thomas
Research Paper


Many toxicology studies on insoluble and poorly soluble nanoparticles point out surface area as an indicator of inhalation exposure. Measuring this criterion thus constitutes an important challenge. Instruments exist which can measure particle surface area concentration in real-time, but it is not known how well they perform when faced with polydisperse nanostructured aerosols. In this study, the response functions of three commercially available instruments based on diffusion charging (LQ1-DC, Matter Engineering; NSAM, TSI model 3550; AeroTrak™ 9000, TSI) were measured for monodisperse aerosols of four different chemical natures with particles ranging in size from 15 to 520 nm. Our results show good agreement between the experimental and theoretical response functions for the three instruments studied. In addition, no significant effect of the chemical nature, density or particle morphology was revealed. Instrument response was also tested with polydisperse aerosols. For these aerosols, discrepancies were observed between measurements and calculated concentrations based on response function and particle number size distribution. Relative differences varied between −60 and +55 % with an average value of −20 %. These differences may be explained by different factors; among them, the existence of a distribution of electrical charges on particles can lead to identical signals measured, and differential diffusion charging performance might lead to concentration-dependent response.


Nanoaerosol Surface area Diffusion charger Instrument performance Response function 


  1. Asbach C, Kaminsli H, Fissan H, Monz C, Dahmann D, Kuhlbusch TAJ (2007) Comparison of ultrafine particle surface area measurement with NSAM and SMPS. In: European Aerosol Conference 2007, Salzburg, Abstract T09A007Google Scholar
  2. Asbach C, Fissan H, Stahlmecke B, Kuhlbusch TAJ, Pui DYH (2009) Conceptual limitations and extensions of lung-deposited Nanoparticle Surface Area Monitor (NSAM). J Nanopart Res 11(1):101–109CrossRefGoogle Scholar
  3. Bau S, Witschger O, Gensdarmes F, Thomas D (2009) Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles. J Phys Conf Ser 170:012006. doi: 10.1088/1742-6596/170/1/012006 CrossRefGoogle Scholar
  4. Bau S, Witschger O, Gensdarmes F, Rastoix O, Thomas D (2010a) A TEM-based method as an alternative tot he BET method for measuring off-line the specific surface-area of nanoaerosols. Powder Technol 200:190–201CrossRefGoogle Scholar
  5. Bau S, Witschger O, Gensdarmes F, Thomas D, Borra JP (2010b) Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator. J Nanopart Res 12:1989–1995CrossRefGoogle Scholar
  6. Bau S, Witschger O, Gensdarmes F, Thomas D (2011) Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes. J Phys Conf Ser 304:012015. doi: 10.1088/1742-6596/304/1/012015 CrossRefGoogle Scholar
  7. Biskos G, Reavell K, Collings N (2005) Unipolar diffusion charging of aerosol particles in the transition regime. J Aerosol Sci 36:247–265CrossRefGoogle Scholar
  8. Brockmann JE (2011) Aerosol transport in sampling lines and inlets. In: Kulkarni P, Baron P, Willeke K (eds) Aerosol measurement: principles, techniques and applications, 3rd edn. Wiley, New York, pp 69–106Google Scholar
  9. Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem 60:309–319CrossRefGoogle Scholar
  10. Bukowiecki N, Dommen J, Prévôt ASH, Richter R, Weingartner E, Baltensperger U (2002a) A mobile pollutant measurement laboratory—measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution. Atmospheric Environ 36:5569–5579CrossRefGoogle Scholar
  11. Bukowiecki N, Kittelson DB, Watts WF, Burtscher H, Weingartner E, Baltensperger U (2002b) Real-time characterization of ultrafine and accumulation mode particles in ambient combustion aerosols. J Aerosol Sci 33:1139–1154CrossRefGoogle Scholar
  12. Buonanno G, Morawska L, Stabile L, Viola A (2010) Exposure to particle number, surface area and PM concentrations in pizzerias. Atmospheric Environ 44:3963–3969CrossRefGoogle Scholar
  13. Buonanno G, Morawska L, Stabile L (2011) Exposure to welding particles in automotive plants. J Aerosol Sci 42:295–304CrossRefGoogle Scholar
  14. Cheng YH, Chao YC, Wu CH, Tsai CJ, Uang SN, Shih TS (2008) Measurements of ultrafine particle concentrations and size distributions in an iron foundry. J Hazard Mater 158:124–130CrossRefGoogle Scholar
  15. Comité Européen de Normalisation (CEN) (1993) Workplace atmospheres: size fraction definitions for measurement of airborne particles in the workplace. CEN standard EN 481Google Scholar
  16. European Commission (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU), 3 pGoogle Scholar
  17. Fissan H, Neumann S, Trampe A, Pui DYH, Shin WG (2007) Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J Nanopart Res 9:53–59CrossRefGoogle Scholar
  18. Foroutan-Pour K, Dutilleul P, Smith DL (1999) Advances in the implementation of the box counting method of fractal dimension estimation. Appl Math Comput 105:195–210CrossRefGoogle Scholar
  19. Frank BP, Saltiel S, Hogrefe O, Grygas J, Lala GG (2008) Determination of mean particle size using the electrical aerosol detector and the condensation particle counter: comparison with the scanning mobility particle sizer. J Aerosol Sci 39:19–29CrossRefGoogle Scholar
  20. Fuchs NA (1964) The mechanics of aerosols, 1st edn. Dover Publications Inc., New YorkGoogle Scholar
  21. Gäggeler HW, Baltensperger U, Emmenegger M, Jost DT, Schmidt-Ott A, Haller P, Hofmann M (1989) The epiphaniometer, a new device for continuous aerosol monitoring. J Aerosol Sci 20(5):557–564CrossRefGoogle Scholar
  22. Heim M, Kasper G, Reischl GP, Gerhart C (2004) Performance of a new commercial electrical mobility spectrometer. Aerosol Sci Technol 38(Suppl 2):3–14Google Scholar
  23. Heitbrink WA, Evans DE, Ku BK, Maynard AD, Slavin T, Peters T (2009) Relationship among particle number, surface area, and respirable mass concentration in an automotive engine manufacturing. J Occup Environ Hyg 6:19–31CrossRefGoogle Scholar
  24. Heyder J, Gebhart J, Rudolf G, Schillerd CF, Stahlhofen W (1986) Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J Aerosol Sci 17:811–825CrossRefGoogle Scholar
  25. Hoppel WA, Frick GM (1989) Comment on the comparison of measured and calculated values of ion attachment coefficients. Aerosol Sci Technol 11:254–258CrossRefGoogle Scholar
  26. Hoppel WA, Frick GM (1990) The nonequilibrium character of the aerosol charge distributions produced by neutralizers. Aerosol Sci Technol 12:471–496CrossRefGoogle Scholar
  27. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon JC, Marano F (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of surface-area and internalized amount. Toxicology 260:142–149CrossRefGoogle Scholar
  28. ICRP (1994) Publication 66: human respiratory tract model for radiological protection. Pergamon, OxfordGoogle Scholar
  29. Jacoby J, Bau S, Witschger O (2011) CAIMAN: a versatile facility to produce aerosols of nanoparticles. J Phys Conf Ser 304:012014. doi: 10.1088/1742-6596/304/1/012014 CrossRefGoogle Scholar
  30. Jung H, Kittelson DB (2005) Characterization of aerosol surface instruments in transition regime. Aerosol Sci Technol 39:902–911CrossRefGoogle Scholar
  31. Kasper M, Matter U, Burtscher H, Bukowiecki N, Mayer A (2001) NanoMet, a new instrument for on-line size- and substance-specific particle emission analysis. SAE technical paper 2001-01-0216, pp 79–88Google Scholar
  32. Keller A, Fierz M, Siegmann K, Siegmann HC, Filippov A (2001) Surface science with nanosized particles in a carrier gas. J Vac Sci Technol A 19:1–8CrossRefGoogle Scholar
  33. Kim JH, Mulholland GW, Kukuck SR, Pui DYH (2005) Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (nano-DMA) for Knudsen number from 0.5 to 83. J Res Natl Inst Stand Technol 110(1):31–54CrossRefGoogle Scholar
  34. Kittelson DB, Watts WF, Savstrom JC, Johnsol JP (2005) Influence of a catalytic stripper on the response of real time aerosol instruments to diesel exhaust aerosol. J Aerosol Sci 36:1089–1107CrossRefGoogle Scholar
  35. Kreyling WG, Semmler-Behnkea M, Chaudhryb Q (2010) A complementary definition of nanomaterials. Nano Today 5:165–168CrossRefGoogle Scholar
  36. Ku BK (2010) Determination of the ratio of diffusion charging-based surface area to geometric surface area for spherical particles in the range of 100–900 nm. J Aerosol Sci 41:835–847CrossRefGoogle Scholar
  37. Ku BK, Evans DE (2012) Investigation of aerosol surface area estimation from number and mass concentration measurements: particle density effect. Aerosol Sci Technol 46:473–484CrossRefGoogle Scholar
  38. Ku BK, Kulkarni P (2012) Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area. J Aerosol Sci 47:100–110CrossRefGoogle Scholar
  39. Ku BK, Maynard AD (2005) Comparing aerosol surface-area measurements of monodisperse ultrafine silver agglomerates by mobility analysis, transmission electron microscopy and diffusion charging. J Aerosol Sci 36(9):1108–1124CrossRefGoogle Scholar
  40. Ku BK, Maynard AD (2006) Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. J Aerosol Sci 37:452–470CrossRefGoogle Scholar
  41. Lall AA, Friedlander SK (2006) On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis. I. Theoretical analysis. J Aerosol Sci 37(3):260–271CrossRefGoogle Scholar
  42. Lebouf RF, Stefaniak AB, Chen BT, Frazer DG, Virji MA (2011a) Measurement of airborne nanoparticle surface area using a filter-based gas adsorption method for inhalation toxicology experiments. Nanotoxicology 5(4):687–699CrossRefGoogle Scholar
  43. Lebouf RF, Ku BK, Chen BT, Frazer DG, Cumpston JL, Stefaniak AB (2011b) Measuring surface-area of airborne titanium dioxide powder agglomerates: relationships between gas adsorption, diffusion and mobility-based methods. J Nanopart Res 13(12):7029–7039CrossRefGoogle Scholar
  44. Li L, Chen DR, Tsai PJ (2009) Evaluation of an electrical aerosol detector (EAD) for the aerosol integral parameter measurement. J Electrost 67:765–773CrossRefGoogle Scholar
  45. Liu PSK, Deshler T (2003) Causes of concentration differences between a scanning mobility particle sizer and a condensation particle counter. Aerosol Sci Technol 37:916–923CrossRefGoogle Scholar
  46. Liu BYH, Pui DYH (1977) On unipolar diffusion charging of aerosols in the continuum regime. J Colloid Interface Sci 58:142–149CrossRefGoogle Scholar
  47. Maynard AD (2003) Estimating aerosol surface-area from number and mass concentration measurements. Ann Occup Hyg 47(2):123–144CrossRefGoogle Scholar
  48. Maynard AD, Aitken RJ (2007) Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicology 1(1):26–41CrossRefGoogle Scholar
  49. Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614CrossRefGoogle Scholar
  50. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker HJ, Warheit D (2006) Safe handling of nanotechnology. Nature 444:267–269CrossRefGoogle Scholar
  51. Moshammer H, Neuberger M (2003) The active surface of suspended particles as a predictor of lung function and pulmonary symptoms in Austrian school children. Atmospheric Environ 37:1737–1744CrossRefGoogle Scholar
  52. Moshammer H, Schinko H, Neuberger M (2005) Total pollen counts do not influence active surface measurements. Atmospheric Environ 39:1551–1555CrossRefGoogle Scholar
  53. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  54. Ntziachristos L, Giechaskiel B, Ristimäki J, Keskinen J (2004) Use of a corona charger for the characterization of automotive exhaust aerosol. J Aerosol Sci 35:943–963CrossRefGoogle Scholar
  55. Oberdörster G, Maynard AD, Donaldson K, Castranova V, Fritzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:1–35CrossRefGoogle Scholar
  56. Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25CrossRefGoogle Scholar
  57. Oh H, Park H, Kim S (2004) Effects of particle shape on the unipolar diffusion charging of nonspherical particles. Aerosol Sci Technol 38:1045–1053CrossRefGoogle Scholar
  58. Park D, Kim S, An M, Hwang J (2007) Real-time measurement of submicron aerosol particles having a lognormal size distribution by simultaneously using unipolar diffusion charger and unipolar field charger. J Aerosol Sci 38:1240–1245CrossRefGoogle Scholar
  59. Park JY, Raynor PC, Maynard AD, Eberly LE, Ramachandran G (2009) Comparison of two estimation methods for surface area concentration using number concentration and mass concentration of combustion-related ultrafine particles. Atmospheric Environ 43:502–509CrossRefGoogle Scholar
  60. Park JY, Ramachandran G, Raynor PC, Kim SW (2011) Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations. J Nanopart Res 13:4897–4911CrossRefGoogle Scholar
  61. Qi C, Asbach C, Shin WG, Fissan H, Pui DYH (2009) The effect of particle pre-existing charge on unipolar charging and its implication on electrical aerosol measurement. Aerosol Sci Technol 43:232–240CrossRefGoogle Scholar
  62. Rogak SN, Flagan RC (1992) Bipolar diffusion charging of spheres and agglomerate aerosol particles. J Aerosol Sci 23:693–710CrossRefGoogle Scholar
  63. Rogak SN, Baltensperger U, Flagan RC (1991) Measurement of mass transfer to agglomerate aerosols. Aerosol Sci Technol 14:447–459CrossRefGoogle Scholar
  64. Ruzer LS (2008) Assessment of nanoparticle surface area by measuring unattached fraction of radon progeny. J Nanopart Res 10:761–766CrossRefGoogle Scholar
  65. Savolainen K, Pylkkänen P, Norppa H, Falck G, Lindberg H, Tuomi T, Vippola M, Alenius H, Hämeri K, Koivisto J, Brouwer D, Mark D, Bard D, Berges M, Jankowska E, Posniak M, Farmer P, Singh R, Krombach F, Bihari P, Kasper G, Seipenbusch M (2011) Nanotechnologies, engineered nanomaterials and occupational health and safety—a review. Saf Sci 48:957–963CrossRefGoogle Scholar
  66. Schulte P, Geraci C, Zumwalde R, Hoover M, Kuempel ED (2008) Occupational risk management of engineered nanoparticles. J Occup Environ Hyg 5:239–249CrossRefGoogle Scholar
  67. Shin WG, Pui DYH, Fissan H, Neumann S, Trampe A (2007) Calibration and numerical simulation of nanoparticle surface area monitor (TSI model 3550 NSAM). J Nanopart Res 9(1):61–69CrossRefGoogle Scholar
  68. Sillanpää M, Geller MD, Phuleria HC, Sioutas C (2008) High collection efficiency electrostatic precipitator for in vitro cell exposure to concentrated ambient particulate matter (PM). J Aerosol Sci 39:335–347CrossRefGoogle Scholar
  69. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009) Generation of nanoparticles by spark discharge. J Nanopart Res 11(2):315–332CrossRefGoogle Scholar
  70. TSI (2008) Application note: measuring nanoparticle exposure. Application Note NSAM-001. 4/11/2008, 8 pGoogle Scholar
  71. Wang J, Shin WG, Mertler M, Sachweh B, Fissan H, Pui DYH (2010a) Measurement of nanoparticle agglomerates by combined measurement of electrical mobility and unipolar charging properties. Aerosol Sci Technol 44:97–108CrossRefGoogle Scholar
  72. Wang YF, Tsai PJ, Chen CW, Chen DR, Hsu DJ (2010b) Using a modified electrical aerosol detector to predict nanoparticle exposures to different regions of the respiratory tract for workers in a carbon black manufacturing industry. Environ Sci Technol 44:6767–6774CrossRefGoogle Scholar
  73. Westerdahl D, Wang X, Pan X, Zhang KM (2009) Characterization of on-road vehicle emission factors and microenvironmental air quality in Beijing, China. Atmospheric Environ 43:697–705CrossRefGoogle Scholar
  74. Wiedensohler A (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci 19:387–389CrossRefGoogle Scholar
  75. Wilson WE, Stanek J, Han HS, Johnson T, Sakurai H, Pui DY, Turner J, Chen DR, Duthie S (2007) Use of the electrical aerosol detector as an indicator of the surface area of fine particles deposited in the lung. J Air Waste Manag Assoc 57:211–220CrossRefGoogle Scholar
  76. Woo KS, Chen DR, Pui DYH, Wilson WE (2001) Use of continuous measurements of integral aerosol parameters to estimate particle surface area. Aerosol Sci Technol 34:57–65Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • S. Bau
    • 1
  • O. Witschger
    • 1
  • F. Gensdarmes
    • 2
  • D. Thomas
    • 3
  1. 1.Department of Pollutant MetrologyInstitut National de Recherche et de SécuritéVandoeuvreFrance
  2. 2.Aerosol Physics and Metrology LaboratoryInstitut de Radioprotection et de Sûreté NucléaireGif-sur-YvetteFrance
  3. 3.Reactions and Chemical Engineering Laboratory (LRGP), Université de Lorraine, UPR 3349 CNRSNancy CedexFrance

Personalised recommendations